2021ICPC网络赛第二场 :L Euler Function 势能线段树

分析

首先考虑欧拉函数的性质

if(p是质数)
	{
		if(i % p == 0) f[i * p] = f[i] * p;
		else f[i * p] = f[i] * (p - 1);
	}

因为 100 100 100以内的质数很少,所以考虑维护 b i t s e t bitset bitset判断质因子是否出现过即可,然后用势能线段树维护即可

代码

#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 10;
const ll mod = 998244353;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a) {
    char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
    while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;}

struct Node{
    int l,r;
    ll res,add;
    bitset<30> tg;
}tr[N * 4];
int a[N];
int n,m;
VI prime;
bool b[N];
bitset<30> st[110];
int cnt[110][110];

int phi(int x){
    int ans = x;
    for(int i = 2; i * i <= x; ++i){
        if(x % i == 0){
            ans = ans / i * (i - 1);
            while(x % i == 0)   x /= i;
        }
    }
    if(x > 1)   ans = ans / x * (x - 1);
    return  ans;
}

void init(){
    for(int i = 2;i <= 100;i++){
        if(!b[i]) prime.pb(i);
        for(int j = 0;prime[j] <= 100 / i;j++){
            b[i * prime[j]] = true;
            if(i % prime[j] == 0) break;
        }
    }
    for(int i = 1;i <= 100;i++)
        for(int j = 0;j < prime.size();j++){
            int x = i;
            while(x % prime[j] == 0){
                cnt[i][j]++;
                x /= prime[j];
            }
            st[i][j] = cnt[i][j];
        }
}

void push(int u){
    tr[u].res = tr[u << 1].res + tr[u << 1 | 1].res;
    tr[u].tg = tr[u << 1].tg & tr[u << 1 | 1].tg;
    tr[u].res %= mod;
}

void down(int u){
    if(tr[u].add != 1){
        ll &k = tr[u].add;
        tr[u << 1].add = tr[u << 1].add * k % mod;
        tr[u << 1 | 1].add = tr[u << 1 | 1].add * k % mod;
        tr[u << 1].res = tr[u << 1].res * k % mod;
        tr[u << 1 | 1].res = tr[u << 1 | 1].res * k % mod;
        k = 1;
    }
}

void build(int u,int l,int r){
    tr[u] = {l,r};
    tr[u].add = 1;
    if(l == r){
        tr[u].res = phi(a[l]);
        tr[u].tg = st[a[l]];
        return;
    }
    int mid = (l + r) >> 1;
    build(u << 1,l,mid),build(u << 1 | 1,mid + 1,r);
    push(u);
}

ll query(int u,int l,int r){
    if(tr[u].l >= l && tr[u].r <= r) return tr[u].res;
    down(u);
    int mid = (tr[u].l + tr[u].r) >> 1;
    ll res = 0;
    if(l <= mid) res = query(u << 1,l,r);
    if(r > mid) res += query(u << 1 | 1,l,r);
    res %= mod;
    return res;
}

void modify(int u,int l,int r,int x,ll y){
    if(tr[u].l >= l && tr[u].r <= r && tr[u].tg[x]){
        for(int i = 1;i <= y;i++){
            tr[u].res = (tr[u].res * prime[x]) % mod;
            tr[u].add = (tr[u].add * prime[x]) % mod;
        }
        return;
    }
    if(tr[u].l == tr[u].r){
        tr[u].res = (tr[u].res * (prime[x] - 1)) % mod;
        tr[u].tg[x] = 1;
        for(int i = 1;i < y;i++){
            tr[u].res = (tr[u].res * prime[x]) % mod;
            tr[u].add = (tr[u].add * prime[x]) % mod;
        }
        return;
    }
    down(u);
    int mid = (tr[u].l + tr[u].r) >> 1;
    if(l <= mid) modify(u << 1,l,r,x,y);
    if(r > mid) modify(u << 1 | 1,l,r,x,y);
    push(u);
}

int main() {
    init();
    read(n),read(m);
    for(int i = 1;i <= n;i++) read(a[i]);
    build(1,1,n);
    while(m--){ 
        int op,l,r,x;
        read(op),read(l),read(r);
        if(op == 0){
            read(x);
            for(int i = 0;i < prime.size();i++)
                if(cnt[x][i]) modify(1,l,r,i,cnt[x][i]);
        }
        else dl(query(1,l,r));
    }   
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值