传送门
分析
跟785E题意差不多,但是785E是在线求法,个人感觉更复杂一下
我们将需要操作的点进行离散化,这样就可以对这些点用树状数字求逆序对,同时还需要维护离散化后每两个点之间的数的逆序对的数量
代码
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<ll> VI;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 10;
const ll mod = 1000000007;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a) {
char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;}
vector<int> nums;
ll tr[N];
PII p[N];
int b[N];
int n;
int lowbit(int x){
return x & -x;
}
void add(int x,ll c){
for(int i = x;i < N;i += lowbit(i)) tr[i] += c;
}
ll sum(int x){
int res = 0;
for(int i = x;i;i -= lowbit(i)) res += tr[i];
return res;
}
int find(int x){
return lower_bound(nums.begin(),nums.end(),x) - nums.begin() + 1;
}
int main() {
read(n);
for(int i = 1;i <= n;i++){
int x,y;
read(x),read(y);
nums.pb(x),nums.pb(y);
p[i].fi = x,p[i].se = y;
}
sort(nums.begin(),nums.end());
nums.erase(unique(nums.begin(),nums.end()),nums.end());
int m = nums.size();
for(int i = 1;i <= m;i++) b[i] = i;
for(int i = 1;i <= n;i++){
int x = find(p[i].fi),y = find(p[i].se);
swap(b[x],b[y]);
}
add(b[m],1);
ll res = 0;
for(int i = m - 1;i;i--){
ll x = nums[i] - nums[i - 1] - 1;
res += x * sum(i);
add(i,x);
res += sum(b[i] - 1);
add(b[i],1);
}
dl(res);
return 0;
}