- 输入图片大小 H p r e v × W p r e v H_{prev}×W_{prev} Hprev×Wprev
- Filter大小 f × f f×f f×f
- 步长 s t r i d e stride stride
- 填充的像素数 p a d pad pad
卷积:
n
H
=
⌊
n
H
p
r
e
v
−
f
+
2
×
p
a
d
s
t
r
i
d
e
⌋
+
1
n_H = \lfloor \frac{n_{H_{prev}} - f + 2 \times pad}{stride} \rfloor +1
nH=⌊stridenHprev−f+2×pad⌋+1
n
W
=
⌊
n
W
p
r
e
v
−
f
+
2
×
p
a
d
s
t
r
i
d
e
⌋
+
1
n_W = \lfloor \frac{n_{W_{prev}} - f + 2 \times pad}{stride} \rfloor +1
nW=⌊stridenWprev−f+2×pad⌋+1
n
C
=
number of filters used in the convolution
n_C = \text{number of filters used in the convolution}
nC=number of filters used in the convolution
池化:
n
H
=
⌊
n
H
p
r
e
v
−
f
s
t
r
i
d
e
⌋
+
1
n_H = \lfloor \frac{n_{H_{prev}} - f}{stride} \rfloor +1
nH=⌊stridenHprev−f⌋+1
n
W
=
⌊
n
W
p
r
e
v
−
f
s
t
r
i
d
e
⌋
+
1
n_W = \lfloor \frac{n_{W_{prev}} - f}{stride} \rfloor +1
nW=⌊stridenWprev−f⌋+1
n
C
=
n
C
p
r
e
v
n_C = n_{C_{prev}}
nC=nCprev