Hadoop与Spark算法分析(四)——PageRank算法

本文详细探讨了PageRank算法在Hadoop和Spark中的实现,包括实验准备、Hadoop与Spark的具体实现步骤、运行过程及测试对比。通过对网页链接关系的有向图分析,PageRank算法用于衡量网页的重要性。在Hadoop中,通过map-reduce迭代计算,而在Spark中利用RDD的并行计算优势加速迭代。测试以10次迭代为收敛标准,最后比较了两种框架的运行结果。
摘要由CSDN通过智能技术生成

PageRank是用于解决网页重要性排序的关键技术之一,其基于网页之间链接关系构建一个有向图结构,实现各个网页级别的划分。一个网页的PageRank值(后面简称PR值),取决于其他网页对该网页的贡献和,以公式形式表示为这里写图片描述,其中U表示所有网页指向网页b的网页集合,L(a)表示网页a的出度,d表示用户浏览一个网页的随机概率,用于解决网页关系间的陷阱问题。根据公式递归计算,各网页的PR值将最终趋于稳定。可以发现,该算法的执行实质是一个概率矩阵的迭代乘法运算。

1. 实验准备

由于Hadoop与Spark对于PageRank算法的实现过程不同,这里分别对Hadoop与Spark算法输入文件进行说明。
对于Hadoop输入文件,每行的数据信息包含网页ID、网页初始PR值1.0以及该网页链接的其他网页ID,以制表符隔开,如

A   1   B,C
B   1   C
C   1   A,D
D   1   B,E
E   1   A

对于Spark输入文件,以网页ID以及该网页链接的每一个网页ID,作为单独一行保存,如

A   B
A   C
B   C
C   A
C   D
D   B
D   E
E   A

2. Hadoop实现

为了完成后续的迭代计算,map过程需要将链接关系图和对其他网页的贡献值分别传递给reduce端。
reduce过程根据key将最终计算的PR值与链接关系图合并输出,用于下次迭代的map端。
测试以10次为收敛标准迭代进行,具体代码实现如下:

package org.hadoop.test;

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class PageRank {
   
    private static final double d = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值