文章目录
任务名称
autograd与逻辑回归
任务简介
学习pytorch的自动求导系统——autograd;通过autograd训练逻辑回归模型
详细说明
本节对pytorch的自动求导系统中常用的两个方法torch.autograd.backward和torch.autograd.grad进行介绍,并演示一阶导数,二阶导数的求导过程;理解了自动求导系统,以及数据载体——张量,前向传播构建计算图,计算图求取梯度过程,这些知识之后,就可以开始正式训练机器学习模型。这里通过演示逻辑回归模型的训练,学习机器学习回归模型的五大模块:数据、模型、损失函数、优化器和迭代训练过程。这五大模块将是后面学习的主线。
作业
1.逻辑回归模型为什么可以进行二分类?
因为逻辑回归是线性的二分类模型表达式
2.采用代码实现逻辑回归模型的训练,并尝试调整数据生成中的mean_value,将mean_value设置为更小的值,例如1,或者更大的值,例如5,会出现什么情况?再尝试仅调整bias,将bias调为更大或者负数,模型训练过程是怎么样的?
把停止条件改为了准确度达到99%,即 acc >= 0.99