【深度之眼PyTorch框架班第五期】作业打卡03:autograd与逻辑回归

任务名称

autograd与逻辑回归

任务简介

学习pytorch的自动求导系统——autograd;通过autograd训练逻辑回归模型

详细说明

本节对pytorch的自动求导系统中常用的两个方法torch.autograd.backward和torch.autograd.grad进行介绍,并演示一阶导数,二阶导数的求导过程;理解了自动求导系统,以及数据载体——张量,前向传播构建计算图,计算图求取梯度过程,这些知识之后,就可以开始正式训练机器学习模型。这里通过演示逻辑回归模型的训练,学习机器学习回归模型的五大模块:数据、模型、损失函数、优化器和迭代训练过程。这五大模块将是后面学习的主线。

作业

1.逻辑回归模型为什么可以进行二分类?

因为逻辑回归是线性的二分类模型表达式

2.采用代码实现逻辑回归模型的训练,并尝试调整数据生成中的mean_value,将mean_value设置为更小的值,例如1,或者更大的值,例如5,会出现什么情况?再尝试仅调整bias,将bias调为更大或者负数,模型训练过程是怎么样的?

把停止条件改为了准确度达到99%,即 acc >= 0.99

未调整时:mean_value = 1.7, bias

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值