两正序列元素之和比值的上下界——小于等于其元素之比的最大值,大于等于元素之比的最小值

对于两个正数序列(集合) { a 1 , a 2 , . . . , a l } \{a_1,a_2,...,a_l\} {a1,a2,...,al} { b 1 , b 2 , . . . , b l } \{b_1,b_2,...,b_l\} {b1,b2,...,bl} ,满足
min ⁡ i a i b i ≤ ∑ i = 1 l a i ∑ i = 1 l b i ≤ max ⁡ i a i b i \min_{i}\frac{a_i}{b_i}\leq \frac{\sum_{i = 1}^{l} a_i}{\sum_{i = 1}^{l} b_i}\leq \max_{i}\frac{a_i}{b_i} iminbiaii=1lbii=1laiimaxbiai

反映的是序列元素之和比值的上下界限。

这种式子的证明,有点梦回高中数学(
这个不等式之前花老大劲用归纳法弯弯绕绕地证了出来,结果发现本来几行就能证好(

Proof:

以证明后半部分为例,设定 M = max ⁡ i a i b i . M=\max_{i}\frac{a_i}{b_i}. M=maxibiai. 这意味着对任意的 i ∈ [ l ] i\in [l] i[l], a i / b i ≤ M a_i/b_i\leq M ai/biM, 于是 a i ≤ M b i . a_i\leq Mb_i. aiMbi.也就是说
∑ i a i ≤ ∑ i M b i = M ∑ i b i , \sum_ia_i\leq\sum_iMb_i=M\sum_ib_i, iaiiMbi=Mibi,
于是
∑ i a i ∑ i b i ≤ M = max ⁡ i a i b i . \frac{\sum_ia_i}{\sum_ib_i}\leq M=\max_i\frac{a_i}{b_i}. ibiiaiM=imaxbiai.

原证明源网络

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

today__present

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值