上面的三个定义,原码和反码没有必要过多解释,但是,补码码的计算方式很多人是困惑的,为什么要各位取反再加1?
回到前面的互补数,我们知道,互补数,假设一个数A,求A在模M下的补数=M-A;同理,一个二进制数B,求它的补码(负数的情况下)=M-B,其实和互补数的求法是一样的,那为什么是取反后加1呢?我们直接用二进制数来看一下:
M = 10000000;
B = 10000001;
我们知道byte的高位是符号位不表示数字,那么这个模M(128)显然是不能用来计算的,但是,没关系我们可以用1111111(127,M-1)来替代模M,那么前面的计算就可以是M-1-B+1,这样间接计算B的补数,这样一来127的二进制低7位各个位都是1,减去一个小于128的数就好比这个数各位取反,由于我们把模M的值低估了1所有取反之后再加1就刚好是B在128模M下的补数,即补码。
说到这里应该都明白补码定义的根本了。
————————————————
版权声明:本文为CSDN博主「ThirteenR」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_34814794/article/details/91901766
补码定义解疑
最新推荐文章于 2023-06-26 11:16:09 发布