bzoj3083 遥远的国度 树链剖分+线段树

题目大意:
维护一棵树,支持三个操作:
1、换根;
2、链修改;
3、查询子树最小值。

题目分析:
如果只有2、3操作就可以直接树链剖分+线段树裸上了。
加上1操作后,我们仍然可以树链剖分+线段树裸上。

对于查询操作,我们分三种情况讨论:
假设查询的点为x。
1、根和x相同:直接输出整棵树的最小值。
2、根不在x的子树中:直接查询原x的子树。
3、根在x的子树中:先找到根在x的哪个子树里,把这个子树刨掉,然后查寻剩余所有点的最小值,那么我们就找到x到根路径上的第一个点,把这个点为根的子树刨掉就可以了。这个点可以倍增求。

代码如下:

#include <cstdio>
#include <algorithm>
#include <iostream>
#define ls(c) (c<<1)
#define rs(c) (c<<1|1)
#define N 120000
using namespace std;
inline int Min(int x,int y) { return x<y?x:y; }
int n,m,Capital;
int fir[N],nes[N<<1],v[N<<1],tot=1;
int q[N],fa[N],dep[N],sz[N],son[N],ld[N],xl[N],pos[N],top;
int st[N][18];
struct segment{
    int l,r,val,mark;
}seg[N<<2];
void edge(int x,int y)
{
    v[++tot]=y;
    nes[tot]=fir[x];
    fir[x]=tot;
}
#define edge(x,y) edge(x,y),edge(y,x)
void dfs1(int c)
{
    sz[c]=1; son[c]=0;
    dep[c]=dep[fa[c]]+1;
    st[c][0]=fa[c];
    for(int i=1;i<=17;i++)
        st[c][i]=st[st[c][i-1]][i-1];
    for(int t=fir[c];t;t=nes[t])
    {
        if(fa[c]==v[t]) continue;
        fa[v[t]]=c;
        dfs1(v[t]);
        sz[c]+=sz[v[t]];
        if(sz[v[t]]>=sz[son[c]]) son[c]=v[t];
    }
}
void dfs2(int c)
{
    xl[++top]=c;
    pos[c]=top;
    ld[c]=c;
    if(son[fa[c]]==c) ld[c]=ld[fa[c]];
    if(son[c]) dfs2(son[c]);
    for(int t=fir[c];t;t=nes[t])
    {
        if(fa[c]==v[t] || son[c]==v[t]) continue;
        dfs2(v[t]);
    }
}
void build_tree(int c,int l,int r)
{
    seg[c].l=l; seg[c].r=r;
    seg[c].mark=-1;
    if(l==r)
    {
        seg[c].val=q[xl[l]];
        return;
    }
    int mid=l+r>>1;
    build_tree(ls(c),l,mid);
    build_tree(rs(c),mid+1,r);
    seg[c].val=Min(seg[ls(c)].val,seg[rs(c)].val);
}
void add_mark(int c,int v)
{
    seg[c].val=v;
    seg[c].mark=v;
}
void push_down(int c)
{
    if(~seg[c].mark && seg[c].l!=seg[c].r)
    {
        add_mark(ls(c),seg[c].mark);
        add_mark(rs(c),seg[c].mark);
    }
    seg[c].mark=-1;
}
void update(int c,int l,int r,int v)
{
    push_down(c);
    if(l<=seg[c].l && r>=seg[c].r)
    {
        add_mark(c,v);
        return;
    }
    int mid=seg[c].l+seg[c].r>>1;
    if(l<=mid) update(ls(c),l,r,v);
    if(r>mid)  update(rs(c),l,r,v);
    seg[c].val=Min(seg[ls(c)].val,seg[rs(c)].val);
}
int query(int c,int l,int r)
{
    push_down(c);
    if(l<=seg[c].l && r>=seg[c].r) return seg[c].val;
    int mid=seg[c].l+seg[c].r>>1;
    if(r<=mid) return query(ls(c),l,r);
    if(l>mid) return query(rs(c),l,r);
    return Min(query(ls(c),l,r),query(rs(c),l,r));
}
void change(int x,int y,int z)
{
    while(ld[x]!=ld[y])
    {
        if(dep[ld[x]]<dep[ld[y]]) swap(x,y);
        update(1,pos[ld[x]],pos[x],z);
        x=fa[ld[x]];
    }
    if(dep[x]<dep[y]) swap(x,y);
    update(1,pos[y],pos[x],z);
}
int Lca(int x,int y)
{
    while(ld[x]!=ld[y])
    {
        if(dep[ld[x]]<dep[ld[y]]) swap(x,y);
        x=fa[ld[x]];
    }
    if(dep[x]<dep[y]) swap(x,y);
    return y;
}
int exLca(int x,int LCA)
{
    for(int i=17;i>=0;i--)
        if(dep[st[x][i]]>dep[LCA])
            x=st[x][i];
    return x;
}
int query(int l,int r)
{
    if(l>r) return 2147483647;
    return query(1,l,r);
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1,x,y;i<n;i++)
    {
        scanf("%d%d",&x,&y);
        edge(x,y);
    }
    for(int i=1;i<=n;i++) scanf("%d",&q[i]);
    scanf("%d",&Capital);
    dfs1(1); dfs2(1);
    build_tree(1,1,n);
    for(int i=1,x,y,opt,z,LCA;i<=m;i++)
    {
        scanf("%d",&opt);
        switch(opt)
        {
        case 1:
            scanf("%d",&x);
            Capital=x;
            break;
        case 2:
            scanf("%d%d%d",&x,&y,&z);
            change(x,y,z);
            break;
        case 3:
            scanf("%d",&x);
            if(Capital==x) { printf("%d\n",seg[1].val); break; }
            LCA=Lca(Capital,x);
            if(LCA==Capital || LCA!=x) printf("%d\n",query(pos[x],pos[x]+sz[x]-1));
            else
            {
                x=exLca(Capital,LCA);
                printf("%d\n",Min(query(1,pos[x]-1),query(pos[x]+sz[x],n)));
            }
        }
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值