PAT_A 1010. Radix (25)

1010. Radix (25)

时间限制
400 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

Given a pair of positive integers, for example, 6 and 110, can this equation 6 = 110 be true? The answer is "yes", if 6 is a decimal number and 110 is a binary number.

Now for any pair of positive integers N1 and N2, your task is to find the radix of one number while that of the other is given.

Input Specification:

Each input file contains one test case. Each case occupies a line which contains 4 positive integers:
N1 N2 tag radix
Here N1 and N2 each has no more than 10 digits. A digit is less than its radix and is chosen from the set {0-9, a-z} where 0-9 represent the decimal numbers 0-9, and a-z represent the decimal numbers 10-35. The last number "radix" is the radix of N1 if "tag" is 1, or of N2 if "tag" is 2.

Output Specification:

For each test case, print in one line the radix of the other number so that the equation N1 = N2 is true. If the equation is impossible, print "Impossible". If the solution is not unique, output the smallest possible radix.

Sample Input 1:
6 110 1 10
Sample Output 1:
2
Sample Input 2:
1 ab 1 2
Sample Output 2:
Impossible
这道题的代码我是在sunbaigui的程序基础上改动的,解题的话主要注意以下几个问题:
1)不能用int,否则会溢出,这里我用的是long long int。
2)在Compare函数中,如果sum比target大,要及时地返回,否则会有溢出的危险。
3)进制查找的最小值为字符串中最大的值+1,查找的最小值是待匹配的十进制数+1。
#include <stdio.h>
#include <string.h>

#define MAX 11
typedef long long int data;

int GetDigit(char *n, data i);
data GetNum(char *n, data radix);
data FindLeastRadix(char *n);
int Compare(char *n,data radix,data target);
data BinarySearch(char *n,data low,data high,data target);

int main()
{
	char n1[MAX], n2[MAX];
	data tag, radix;
	data n;
	data low, high, result;
	scanf("%s %s %lld %lld", &n1, &n2, &tag, &radix);
	if (tag == 1) {
		n = GetNum(n1, radix);
		low = FindLeastRadix(n2);
		high = n + 1;
		//high = n > low ? n + 1 : low + 1;                   
		result = BinarySearch(n2, low, high, n);
	}
	else {
		n = GetNum(n2, radix);
		low = FindLeastRadix(n1);
		high = n + 1;
		//high = n > low ? n + 1 : low + 1;
		result = BinarySearch(n1, low, high, n);
	}
	if (result == -1)
		printf("Impossible");
	else
		printf("%lld", result);
	return 0;
}
int GetDigit(char *n, data i)
{
	if (n[i] >= '0'&&n[i] <= '9') {
		return n[i] - '0';
	}
	else {
		return n[i] - 'a' + 10;
	}
}
data GetNum(char *n, data radix)
{
	data sum = 0;
	data len = strlen(n);
	data x = 1;
	for (data i = len - 1; i > -1; i--) {
		int dig = GetDigit(n, i);
		sum += dig*x;
		x *= radix;
	}
	return sum;
}
data FindLeastRadix(char *n)
{
	data len = strlen(n);
	data least = 0;
	for (data i = 0; i < len; i++) {
		int digit = GetDigit(n, i);
		if (digit >= least)
			least = digit + 1;
	}
	return least;
}
int Compare(char *n, data radix, data target)
{
	/*data len = strlen(n);
	data sum = GetNum(n, radix);*/
	data sum = 0;
	data len = strlen(n);
	data x = 1;
	for (data i = len - 1; i > -1; i--) {
		int dig = GetDigit(n, i);
		sum += dig*x;
		if (sum > target)                            //avoid over flow
			return 1;
		x *= radix;
	}
	if (sum > target)
		return 1;
	else if (sum < target)
		return -1;
	else
		return 0;
}
data BinarySearch(char *n, data low, data high, data target)
{
	data mid = low;
	while (low <= high) {
		int flag = Compare(n, mid, target);
		switch (flag) {
		case 1:
			high = mid - 1;
			break;
		case -1:
			low = mid + 1;
			break;
		case 0:
			return mid;
		}
		mid = (high + low) >> 1;
	}
	return -1;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值