看到有文章说kernel_size为1的卷积相当于全连接层的运算,这里简单地使用1维的卷积核证明一下
输入的数据用
X
∈
R
(
d
,
n
)
X \in \mathbb{R}^{(d,n)}
X∈R(d,n)表示,共有
n
n
n个数据,每个数据是
d
d
d维。
全连接层用
L
∈
R
(
d
,
d
)
L \in \mathbb{R}^{(d,d)}
L∈R(d,d)表示,一维的卷积用
C
∈
R
(
d
,
d
)
C \in \mathbb{R}^{(d,d)}
C∈R(d,d)表示,即卷积的in_channel=d, out_channel=d
,
C
C
C的行向量可以看做是一个输出的out_channel
为1卷积核
C
i
C_i
Ci。
使用 C i C_i Ci对 X X X做卷积运算,相当于对 X X X的每一个列向量做点积,即 C i × X ∈ R ( 1 , n ) C_i \times X \in\mathbb{R}^{(1,n)} Ci×X∈R(1,n)所以用 C C C与 X X X做矩阵乘法即可得到卷积运算后的结果 C × X ∈ R ( d , n ) C \times X \in\mathbb{R}^{(d,n)} C×X∈R(d,n)这一步和全连接层的矩阵乘法是等价的 L × X ∈ R ( d , n ) L \times X \in\mathbb{R}^{(d,n)} L×X∈R(d,n)
接下来用Pytorch的代码证明上述过程:
import torch
x = torch.randn(1, 5, 4) # batch-size = 1, d = 5, n = 4
c = torch.nn.Conv1d(in_channels=5, out_channels=5, kernel_size=1, bias=False)
l = torch.nn.Linear(in_features=5, out_features=5, bias=False)
l.weight = torch.nn.Parameter(c.weight[:, :, 0])
print(torch.allclose(c(x), l(x.transpose(1, 2)).transpose(1, 2)))