概率论
togetlife
世事静方见,人情淡始长
展开
-
叶丙成-概率-chapter1-基础知识
集合论 全集(universal set):SSS 空集(empty set):ϕ\phiϕ 交集(intersection) 并集(union) 补集(complement) 差集(difference) 不相交(disjoint) 互斥(mutually exclusive):若一组集合X1,X2,…,XnX_1,X_2,\dots,X_nX1,X2,…,Xn中任意两个集合都不相交,则...原创 2019-03-15 20:33:58 · 686 阅读 · 0 评论 -
叶丙成-概率-chapter2-概率公理&条件概率
国立台湾大学叶丙成《机率》课程学习-chapter2-概率公理&条件概率 2-1概率公理以及衍生性质 2.1.1概率公理 公理:近代数学常以数条公理作为整套理论的基石 好处是头过身过,公理常是不能被证明的基本性质 概率三公理(axioms of probability) 公理1:对任何事件AAA而言,P(A)>=0P(A)>=0P(A)>=0 公理2:P原创 2019-03-16 20:32:28 · 1610 阅读 · 0 评论 -
叶丙成-概率-chapter4-随机变量-累积分布函数CDF-概率质量函数PMF-伯努利分布-二项分布-均匀分布
国立台湾大学叶丙成《机率》课程学习-chapter4.1-随机变量随机变量 视频地址1(需科学上网,有需要可以留言要云分享) 视频地址2-B站 随机变量 随机变量(random variable,R.V.)定义:是一个用来把实验结果(outcome)数字化的表示方式。 可以让概率的推导更数学,更简明 随机变数通常使用大写英文字母表示 随机变量的本质?函数! 随即变量其实是一个函数,给XXX一个o...原创 2019-03-21 10:19:39 · 3984 阅读 · 0 评论 -
叶丙成-概率-chapter3-概率的独立性与使用图解&数数法求概率
国立台湾大学叶丙成《机率》课程学习-chapter3 1.概率的独立性 常见定义1: 若两事件A,BA,BA,B的概率满足:P(A⋂B)=P(A)⋅P(B)P(A\bigcap B)=P(A)\cdot P(B)P(A⋂B)=P(A)⋅P(B),则A,BA,BA,B两事件称为概率上的独立事件 常见定义2: 若两事件A,BA,BA,B的概率满足:P(A∣B)=P(A)P(A|B)=P(A)P(A∣...原创 2019-03-18 22:43:54 · 816 阅读 · 0 评论