配置文件的编写方法及优化方法

JLU-IPVR

听笙

Blob,Layer and Net以及对应配置文件的编写

深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成。Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型。它将所有的信息数据定义为blobs,从而进行便利的操作和通讯。

Blob是caffe框架中一种标准的数组,一种统一的内存接口,它详细描述了信息是如何存储的,以及如何在层之间通讯的。

1、blob

Blobs封装了运行时的数据信息,提供了CPU和GPU的同步。从数学上来说,Blob就是一个N维数组。它是caffe中的数据操作基本单位,就像matlab中以矩阵为基本操作对象一样。只是矩阵是二维的,而Blob是N维的。N可以是2,3,4等等。对于图片数据来说,Blob可以表示为(N*C*H*W)这样一个4D数组。其中N表示图片的数量,C表示图片的通道数,H和W分别表示图片的高度和宽度。当然,除了图片数据,Blob也可以用于非图片数据。比如传统的多层感知机,就是比较简单的全连接网络,用2D的Blob,调用innerProduct层来计算就可以了。

在模型中设定的参数,也是用Blob来表示和运算。它的维度会根据参数的类型不同而不同。比如:在一个卷积层中,输入一张3通道图片,有96个卷积核,每个核大小为11*11,因此这个Blob是96*3*11*11. 而在一个全连接层中,假设输入1024通道图片,输出1000个数据,则Blob为1000*1024

2、layer

层是网络模型的组成要素和计算的基本单位。层的类型比较多,如Data,Convolution,Pooling,ReLU,Softmax-loss,Accuracy等,一个层的定义大至如下图:


从bottom进行数据的输入 ,计算后,通过top进行输出。图中的黄色多边形表示输入输出的数据,蓝色矩形表示层。

每一种类型的层都定义了三种关键的计算:setup,forward and backword

setup: 层的建立和初始化,以及在整个模型中的连接初始化。

forward: 从bottom得到输入数据,进行计算,并将计算结果送到top,进行输出。

backward: 从层的输出端top得到数据的梯度,计算当前层的梯度,并将计算结果送到bottom,反向传递。

3、Net

就像搭积木一样,一个net由多个layer组合而成。

现给出 一个简单的2层神经网络的模型定义( 加上loss 层就变成三层了),先给出这个网络的拓扑。


第一层:name为mnist, type为Data,没有输入(bottom),只有两个输出(top),一个为data,一个为label

第二层:name为ip,type为InnerProduct, 输入数据data, 输出数据ip

第三层:name为loss, type为SoftmaxWithLoss,有两个输入,一个为ip,一个为label,有一个输出loss,没有画出来。

对应的配置文件prototxt就可以这样写:

name: "LogReg"

layer {

  name: "mnist"

  type: "Data"

  top: "data"

  top: "label"

  data_param {

    source: "input_leveldb"

    batch_size: 64

  }

}

layer {

  name: "ip"

  type: "InnerProduct"

  bottom: "data"

  top: "ip"

  inner_product_param {

    num_output: 2

  }

}

layer {

  name: "loss"

  type: "SoftmaxWithLoss"

  bottom: "ip"

  bottom: "label"

  top: "loss"

}

第一行将这个模型取名为LogReg, 然后是三个layer的定义,参数都比较简单,只列出必须的参数。

Solver及其配置

solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为

# caffe train--solver=*_slover.prototxt

在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法。

到目前的版本,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。

Stochastic Gradient Descent (type:"SGD")(最常用的),

AdaDelta (type: "AdaDelta"),

Adaptive Gradient (type:"AdaGrad"),

Adam (type: "Adam"),

Nesterov’s Accelerated Gradient (type:"Nesterov") and

RMSprop (type: "RMSProp")

   具体的每种方法的介绍,请看本系列的下一篇文章, 本文着重介绍solver配置文件的编写。

Solver的流程:

1.设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络。(通过调用另外一个配置文件prototxt来进行)

2.通过forward和backward迭代的进行优化来跟新参数。

3.定期的评价测试网络。(可设定多少次训练后,进行一次测试)

4.在优化过程中显示模型和solver的状态

在每一次的迭代过程中,solver做了这几步工作:

1、调用forward算法来计算最终的输出值,以及对应的loss

2、调用backward算法来计算每层的梯度

3、根据选用的slover方法,利用梯度进行参数更新

4、记录并保存每次迭代的学习率、快照,以及对应的状态。

接下来,我们先来看一个实例:

net: "examples/mnist/lenet_train_test.prototxt"

test_iter: 100

test_interval: 500

base_lr: 0.01

momentum: 0.9

type: SGD

weight_decay: 0.0005

lr_policy: "inv"

gamma: 0.0001

power: 0.75

display: 100

max_iter: 20000

snapshot: 5000

snapshot_prefix: "examples/mnist/lenet"

solver_mode: CPU

接下来,我们对每一行进行详细解译:

net:"examples/mnist/lenet_train_test.prototxt"

设置深度网络模型。每一个模型就是一个net,需要在一个专门的配置文件中对net进行配置,每个net由许多的layer所组成。每一个layer的具体配置方式可参考前几章中的介绍。注意的是:文件的路径要从caffe的根目录开始,其它的所有配置都是这样。

也可用train_net和test_net来对训练模型和测试模型分别设定。例如:

train_net:"examples/hdf5_classification/logreg_auto_train.prototxt"

test_net:"examples/hdf5_classification/logreg_auto_test.prototxt"

接下来第二行:

test_iter: 100

这个要与test layer中的batch_size结合起来理解。mnist数据中测试样本总数为10000,一次性执行全部数据效率很低,因此我们将测试数据分成几个批次来执行,每个批次的数量就是batch_size。假设我们设置batch_size为100,则需要迭代100次才能将10000个数据全部执行完。因此test_iter设置为100。执行完一次全部数据,称之为一个epoch

test_interval: 500

测试间隔。也就是每训练500次,才进行一次测试。

base_lr: 0.01

lr_policy: "inv"

gamma: 0.0001

power: 0.75

这四行可以放在一起理解,用于学习率的设置。只要是梯度下降法来求解优化,都会有一个学习率,也叫步长。base_lr用于设置基础学习率,在迭代的过程中,可以对基础学习率进行调整。怎么样进行调整,就是调整的策略,由lr_policy来设置。

lr_policy可以设置为下面这些值,相应的学习率的计算为:

 

- fixed:保持base_lr不变.

- step: 如果设置为step,则还需要设置一个stepsize,  返回

     base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数

- exp: 返回base_lr * gamma ^ iter, iter为当前迭代次数

- inv:如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (-power)

- multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据 stepvalue值变化

- poly:学习率进行多项式误差, 返回base_lr (1 - iter/max_iter) ^ (power)

- sigmoid:学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))

multistep示例:

base_lr: 0.01

momentum: 0.9

weight_decay: 0.0005

# The learning rate policy

lr_policy: "multistep"

gamma: 0.9

stepvalue: 5000

stepvalue: 7000

stepvalue: 8000

stepvalue: 9000

stepvalue: 9500

接下来的参数:

momentum :0.9

上一次梯度更新的权重,具体可参看下一篇文章。

type: SGD

优化算法选择。这一行可以省掉,因为默认值就是SGD。总共有六种方法可选择,在本文的开头已介绍。

weight_decay: 0.0005

权重衰减项,防止过拟合的一个参数

display: 100

每训练100次,在屏幕上显示一次。如果设置为0,则不显示。

max_iter: 20000

最大迭代次数。这个数设置太小,会导致没有收敛,精确度很低。设置太大,会导致震荡,浪费时间。

snapshot: 5000

snapshot_prefix:"examples/mnist/lenet"

快照。将训练出来的model和solver状态进行保存,snapshot用于设置训练多少次后进行保存,默认为0,不保存。snapshot_prefix设置保存路径。

还可以设置snapshot_diff,是否保存梯度值,默认为false,不保存。

也可以设置snapshot_format,保存的类型。有两种选择:HDF5 和BINARYPROTO ,默认为BINARYPROTO

solver_mode: CPU

设置运行模式。默认为GPU,如果你没有GPU,则需要改成CPU,否则会出错。

 注意:以上的所有参数都是可选参数,都有默认值。根据solver方法(type)的不同,还有一些其它的参数,在此不一一列举。

Solver优化方法

上文提到,到目前为止,caffe总共提供了六种优化方法:

Stochastic Gradient Descent (type:"SGD"),

AdaDelta (type: "AdaDelta"),

Adaptive Gradient (type:"AdaGrad"),

Adam (type: "Adam"),

Nesterov’s Accelerated Gradient (type:"Nesterov") and

RMSprop (type: "RMSProp")

Solver就是用来使loss最小化的优化方法。对于一个数据集D,需要优化的目标函数是整个数据集中所有数据loss的平均值。


其中,fW(x(i))计算的是数据x(i)上的loss, 先将每个单独的样本x的loss求出来,然后求和,最后求均值。 r(W)是正则项(weight_decay),为了减弱过拟合现象。

如果采用这种Loss 函数,迭代一次需要计算整个数据集,在数据集非常大的这情况下,这种方法的效率很低,这个也是我们熟知的梯度下降采用的方法。

在实际中,通过将整个数据集分成几批(batches),每一批就是一个mini-batch,其数量(batch_size)为N<<|D|,此时的loss 函数为:

 

有了loss函数后,就可以迭代的求解loss和梯度来优化这个问题。在神经网络中,用forward pass来求解loss,用backward pass来求解梯度。

在caffe中,默认采用的Stochastic Gradient Descent(SGD)进行优化求解。后面几种方法也是基于梯度的优化方法(like SGD),因此本文只介绍一下SGD。其它的方法,有兴趣的同学,可以去看文献原文。

1、Stochastic gradient descent(SGD)

随机梯度下降(Stochastic gradient descent)是在梯度下降法(gradientdescent)的基础上发展起来的,梯度下降法也叫最速下降法,具体原理在网易公开课《机器学习》中,吴恩达教授已经讲解得非常详细。SGD在通过负梯度和上一次的权重更新值Vt的线性组合来更新W,迭代公式如下:

 

其中,  α是负梯度的学习率(base_lr),μ是上一次梯度值的权重(momentum),用来加权之前梯度方向对现在梯度下降方向的影响。这两个参数需要通过tuning来得到最好的结果,一般是根据经验设定的。如果你不知道如何设定这些参数,可以参考相关的论文。

在深度学习中使用SGD,比较好的初始化参数的策略是把学习率设为0.01左右(base_lr: 0.01),在训练的过程中,如果loss开始出现稳定水平时,对学习率乘以一个常数因子(gamma),这样的过程重复多次。

对于momentum,一般取值在0.5--0.99之间。通常设为0.9,momentum可以让使用SGD的深度学习方法更加稳定以及快速。

关于更多的momentum,请参看Hinton的《A Practical Guide to Training Restricted Boltzmann Machines》。  

实例: 

base_lr: 0.01

lr_policy: "step"

gamma: 0.1  

stepsize: 1000 

max_iter: 3500

momentum: 0.9

lr_policy设置为step,则学习率的变化规则为 base_lr* gamma ^ (floor(iter / stepsize))

即前1000次迭代,学习率为0.01; 第1001-2000次迭代,学习率为0.001; 第2001-3000次迭代,学习率为0.00001,第3001-3500次迭代,学习率为10-5  

上面的设置只能作为一种指导,它们不能保证在任何情况下都能得到最佳的结果,有时候这种方法甚至不work。如果学习的时候出现diverge(比如,你一开始就发现非常大或者NaN或者inf的loss值或者输出),此时你需要降低base_lr的值(比如,0.001),然后重新训练,这样的过程重复几次直到你找到可以work的base_lr。

2、AdaDelta

AdaDelta是一种”鲁棒的学习率方法“,是基于梯度的优化方法(like SGD)。

具体的介绍文献:

M.Zeiler ADADELTA: AN ADAPTIVE LEARNING RATE METHODarXiv preprint, 2012.

示例:

net:"examples/mnist/lenet_train_test.prototxt"

test_iter: 100

test_interval: 500

base_lr: 1.0

lr_policy: "fixed"

momentum: 0.95

weight_decay: 0.0005

display: 100

max_iter: 10000

snapshot: 5000

snapshot_prefix:"examples/mnist/lenet_adadelta"

solver_mode: GPU

type: "AdaDelta"

delta: 1e-6

从最后两行可看出,设置solver type为Adadelta时,需要设置delta的值。

3、AdaGrad

自适应梯度(adaptive gradient)是基于梯度的优化方法(like SGD)

具体的介绍文献:

Duchi,E. Hazan, and Y. Singer. Adaptive Subgradient Methods for Online Learning andStochastic OptimizationTheJournal of Machine Learning Research, 2011.

示例:

net:"examples/mnist/mnist_autoencoder.prototxt"

test_state: { stage: 'test-on-train' }

test_iter: 500

test_state: { stage: 'test-on-test' }

test_iter: 100

test_interval: 500

test_compute_loss: true

base_lr: 0.01

lr_policy: "fixed"

display: 100

max_iter: 65000

weight_decay: 0.0005

snapshot: 10000

snapshot_prefix:"examples/mnist/mnist_autoencoder_adagrad_train"

# solver mode: CPU or GPU

solver_mode: GPU

type: "AdaGrad"

4、Adam

是一种基于梯度的优化方法(like SGD)。

 具体的介绍文献:

D.Kingma, J. Ba. Adam: A Method for Stochastic OptimizationInternational Conference for LearningRepresentations, 2015.

5、NAG

Nesterov的加速梯度法(Nesterov’s acceleratedgradient)作为凸优化中最理想的方法,其收敛速度非常快。

 具体的介绍文献:

 I.Sutskever, J. Martens, G. Dahl, and G. Hinton. On the Importance of Initialization and Momentum in DeepLearningProceedingsof the 30th International Conference on Machine Learning, 2013.

示例:

net:"examples/mnist/mnist_autoencoder.prototxt"

test_state: { stage: 'test-on-train' }

test_iter: 500

test_state: { stage: 'test-on-test' }

test_iter: 100

test_interval: 500

test_compute_loss: true

base_lr: 0.01

lr_policy: "step"

gamma: 0.1

stepsize: 10000

display: 100

max_iter: 65000

weight_decay: 0.0005

snapshot: 10000

snapshot_prefix: "examples/mnist/mnist_autoencoder_nesterov_train"

momentum: 0.95

# solver mode: CPU or GPU

solver_mode: GPU

type: "Nesterov"

6、RMSprop

RMSprop是Tieleman在一次Coursera课程演讲中提出来的,也是一种基于梯度的优化方法(like SGD)

具体的介绍文献:

T.Tieleman, and G. Hinton. RMSProp: Divide the gradient by a running average of itsrecent magnitudeCOURSERA:Neural Networks for Machine Learning.Technical report, 2012.

 示例:

net:"examples/mnist/lenet_train_test.prototxt"

test_iter: 100

test_interval: 500

base_lr: 1.0

lr_policy: "fixed"

momentum: 0.95

weight_decay: 0.0005

display: 100

max_iter: 10000

snapshot: 5000

snapshot_prefix: "examples/mnist/lenet_adadelta"

solver_mode: GPU

type: "RMSProp"

rms_decay: 0.98

最后两行,需要设置rms_decay值。

 


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值