题目描述
输入一个数N,输出它的全排列。
解题思路
使用递归+回溯的思想,搜索全部的可能性。
比如 N = 4,第一次搜索的结果是 1 2 3 4。
边界输出也是1234,4的check数组(检查是否被遍历)清空回退到上一层,上一层的3接着往下试试,一看呦呵4也可以走,他就走到4的位置,最后一个数又从1开始遍历(1不行…2不行…3可以)所以回退之后的搜索是1243,如此往复再回退再搜索。
关于递归函数的再阐释:以这道题为例,递归的强大之处在于思维的简单性,我们每次以当前的i作为搜索目标。例如,以1开头的搜索结果是什么呢,哦是dfs(1),开始了吗?结束了。因为你根本不必要想清楚他的具体实现过程。不过这里当然要剖析一下。dfs(1)是个啥——它是执行了一系列操作的dfs(2)。换言之,想要1的全排列,我就要2的全排列前面放个1,想要2的全排列呢?我就在3的全排列前面放个2…以此递归过去。 那么每次的判断都是什么? 是检查当前的数有没有被扫过,没被扫过才能进行操作(if(check[i] == 0){…}),如果没扫过就进行遍历,赋值,等内层的dfs结束后再清空。
容易得知总共的搜索次数是N * (N-1) * (N-2)*…*1共 N!次。
但是最后输出可能过于耗时,这里使用bufferreader方法进行缓冲。
代码
package test;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.util.Scanner;
public class test1{
static int[] check;
static int[] arr;
static BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));
static void dfs(int step,int n) throws IOException {
if(step>n) {
for(int i=1;i<=n;i++) {
//System.out.printf(arr[i] + " ");
out.write(arr[i] + " ");
}
out.write("\n");
out.flush();
return;
}
else {
for(int i=1;i<=n;i++) {
if(check[i] == 0) {
check[i] = 1;
arr[step] = i;
dfs(step+1,n);
check[i] = 0;
}
}
}
}
public static void main(String[] args) throws IOException {
Scanner read = new Scanner(System.in);
int n = read.nextInt();
arr = new int[n+1];
check = new int[n+1];
dfs(1,n);
}
}