ICPC NEAU Programming Contest 2020 E. 随便置换(模拟枚举环,置换)

在这里插入图片描述

打完这场比赛这道题也只有下面这一篇题解:
https://blog.csdn.net/Long_hen/article/details/106663880
然后苦思冥想还是不得道。

昨天牛客多校竟然出了道原题(所以秒了),借此机会来彻底搞懂一下这玩意。

貌似和离散数学中的置换群有关,但是本题不需要,你甚至可以把本题就当做模拟。

思路:
置换群理论:https://blog.csdn.net/u011728372/article/details/11965461

题目意思是
a [ 1 ] , a [ 2 ] , a [ 3 ] , . . . , a [ n ] a[1],a[2],a[3],...,a[n] a[1],a[2],a[3],...,a[n]置换成
1,2,3,…,n

我们逆过来看就是
1,2,3,…n置换成
a [ 1 ] , a [ 2 ] , a [ 3 ] , . . . a [ n ] a[1],a[2],a[3],...a[n] a[1],a[2],a[3],...a[n]

通过 c [ i ] = p [ a [ i ] ] c[i]=p[a[i]] c[i]=p[a[i]]的变换。

其中 p p p数组作为置换数组是确定的(也可能多解,不考虑)。

我们这个置换过程会形成很多的环,并且这些环不相交(相交了就有多出边,不可能)。
我们只需要维护这个环即可。

实际上就是
1 − > x 1 − > x 2 − > x 3... − > x m − > a [ 1 ] 1 -> x1 -> x2 -> x3...->xm-> a[1] 1>x1>x2>x3...>xm>a[1]
2 − > y 1 − > y 2 − > y 3... − > y m − > a [ 2 ] 2 -> y1 -> y2 -> y3...->ym-> a[2] 2>y1>y2>y3...>ym>a[2]
3 − > z 1 − > z 2 − > z 3... − > z m − > a [ 3 ] 3 -> z1 -> z2 -> z3...->zm-> a[3] 3>z1>z2>z3...>zm>a[3]

其中x1,y1,z1代表中间置换结果。
根据题意我们实际可以知道:
1置换m次变成 a [ 1 ] a[1] a[1] a [ 1 ] a[1] a[1]置换 m m m次变成 a [ a [ 1 ] ] a[a[1]] a[a[1]] a [ a [ 1 ] ] a[a[1]] a[a[1]]置换 m m m次变成 a [ a [ a [ 1 ] ] ] a[a[a[1]]] a[a[a[1]]],最后又回到1,这就是我们要求的环。

假设这个环的长度为 l l l(因为环不相交,所以之前算出来的 m m m置换环的数目,就对应这个真实环的大小,而且保证真实环不会有重复数字,否则就无限循环了)、

那么假设这个环的真实排列为 b [ 0 ] − > b [ 1 ] − > b [ 2 ] − > b [ 3 ] − > . . . − > b [ l − 1 ] b[0]->b[1]->b[2]->b[3]->...->b[l-1] b[0]>b[1]>b[2]>b[3]>...>b[l1]
那么 b [ 0 ] = 1 b[0]=1 b[0]=1,我们已知的是1置换 m m m次变成 a [ 1 ] a[1] a[1],而置换的次数为 m m m,所以对于的真实环中下标为 m m m% l l l a [ 1 ] a[1] a[1]置换 m m m次变成 a [ a [ 1 ] ] a[a[1]] a[a[1]],同理对应真实环下标为 2 ∗ m 2*m 2m% l l l,依次类推,就可以求出 b b b数组,对应环的真实排列。

那么我们要求置换数组。
注意置换公式 c [ i ] = p [ a [ i ] ] c[i]=p[a[i]] c[i]=p[a[i]]
如果我们要将数在环中前移一位,对应的置换数组 p [ b [ j ] ] = b [ j − 1 ] p[b[j]]=b[j-1] p[b[j]]=b[j1],如果后移一位,就是 p [ b [ j ] ] = b [ j + 1 ] p[b[j]]=b[j+1] p[b[j]]=b[j+1]

本题我们是反着置换的,所以是 p [ b [ j ] ] = b [ j − 1 ] p[b[j]]=b[j-1] p[b[j]]=b[j1]

至于原理,你放到置换公式中就懂了: c [ i ] = p [ a [ i ] ] = p [ b [ j ] ] = b [ j − 1 ] c[i]=p[a[i]]=p[b[j]]=b[j-1] c[i]=p[a[i]]=p[b[j]]=b[j1],可以看出这样挪刚好就是在环中往前置换一位。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <iostream>
#include <map>

using namespace std;
const int maxn = 2e5 + 7;

int fa[maxn],cnt[maxn];
int a[maxn],b[maxn],p[maxn];

int findset(int x) {
    if(fa[x] == x) return x;
    return fa[x] = findset(fa[x]);
}

int gcd(int n,int m) {
    return m == 0 ? n : gcd(m,n % m);
}

int main() {
    int T;scanf("%d",&T);
    while(T--) {
        int n,m;scanf("%d%d",&n,&m);
        for(int i = 1;i <= n;i++) {
            fa[i] = i;
            cnt[i] = 0;
        }
        
        for(int i = 1;i <= n;i++) {
            scanf("%d",&a[i]);
            int rx = findset(i),ry = findset(a[i]);
            if(rx != ry) fa[rx] = ry; //并查集维护环
        }

        for(int i = 1;i <= n;i++) {
            cnt[findset(i)]++;
        }
        
        int flag = 1;
        for(int i = 1;i <= n;i++) {
            if(cnt[i] == 0) continue;
            if(gcd(m,cnt[i]) != 1) { //gcd不等于0的话没法获取环中节点
                flag = 0;
                break;
            }
        }
        
        if(flag == 0) {
            printf("NO\n");
            continue;
        }
        
        printf("YES\n");
        
        for(int i = 1;i <= n;i++) {
            if(cnt[i] == 0) continue;
            int now = i;
            for(int j = 0;j < cnt[i];j++) {
                b[1ll * j * m % cnt[i]] = now; //获取环节点的真实位置
                now = a[now]; //枚举环中节点
            }
            b[cnt[i]] = b[0];
            for(int j = 1;j <= cnt[i];j++) {
                p[b[j]] = b[j - 1]; //挪一位,刚好得到置换数组
            }
        }
        for(int i = 1;i <= n;i++) {
            printf("%d ",p[i]);
        }
        printf("\n");
    }
    return 0;
}

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值