java算法day28
- 300 最长递增子序列
- 136 只出现一次的数字
- 169 多数元素
- 234 回文链表
- 53 最大子数组和
300 最长递增子序列
这个是记忆化搜索的代码。是从递归改过来的。
这题显然是要用dp做比较合适。因为很容易看到原问题与子问题之间的关系。
还是从后往前看。
然后可以利用选与不选,或者选哪个。这两种方式来进行拆分,然后进行递归。
class Solution {
int[] memo;
public int lengthOfLIS(int[] nums) {
if(nums==null||nums.length==0){
return 0;
}
int n = nums.length;
memo = new int[n];
int maxLen = 0;
for(int i = n-1;i>=0;i--){
maxLen = Math.max(maxLen,dfs(nums,i));
}
return maxLen;
}
int dfs(int[] nums,int index){
if(index == 0){
return 1;
}
if(memo[index]!=0){
return memo[index];
}
int maxLen = 1;
for(int i = index-1;i>=0;i--){
if(nums[i]<nums[index]){
maxLen = Math.max(maxLen,dfs(nums,i)+1);
}
}
memo[index] = maxLen;
return maxLen;
}
}
如果你熟悉了递归转记忆化搜索转动态规划这个模式。那么可以直接来看动态规划怎么写了。
如果你懂这个过程,那么完全可以看懂递归模板这样做的原因。以及找到这些相关因素到底能有什么用。详细的总结我写在最后面那个题了。我们来看这题dp怎么做
状态定义:
dp[i]的值代表nums以nums[i]结尾的最长子序列的长度。
状态转移方程。
136 只出现一次的数字
思路:
拿到题目首先看到题目的含义,就想到了统计数字出现次数,那么就想到了Hash。但是题目不让用额外的空间,那么哈希没用了。
那么往不用空间复杂度想,我又想到了排序,但是排序最快也要o(nlogn),题目又要用o(n)时间复杂度,于是排序也没有了。
然后去看题解了。
这个解法完全是因为题目的含义才能解出来:
除了某个元素只出现一次之外,其余元素均出现2次。
这非常符合位运算的性质。你要是知道这个性质,你也可以做:
既满足时间复杂度又满足空间复杂度,就要提到位运算中的异或运算 XOR,主要因为异或运算有以下几个特点:
一个数和 0 做 XOR 运算等于本身:a⊕0 = a
一个数和其本身做 XOR 运算等于 0:a⊕a = 0
XOR 运算满足交换律和结合律:a⊕b⊕a = (a⊕a)⊕b = 0⊕b = b
由于满足交换律和结合律,那么按顺序遍历一遍进行异或运算,那么最后出现两次的肯定异或得到0了。
最后的情况肯定是这个单独的出现的元素异或0得到他本身,返回这个结果就结束了。
class Solution {
public int singleNumber(int[] nums) {
if(nums.length == 1){
return nums[0];
}
int length = nums.length;
//取第一个元素就开始遍历,然后返回最后的结果。
int ans = nums[0];
for(int i = 1;i<length;i++){
ans^=nums[i];
}
return ans;
}
}
169 多数元素
那道题想到两个想法:
1、哈希,2、排序。
class Solution {
public int majorityElement(int[] nums) {
Map<Integer,Integer> map = new HashMap<>();
int length = nums.length;
for(int i = 0;i<length;i++){
if(map.containsKey(nums[i])){
int value = map.get(nums[i]);
map.put(nums[i],value+1);
}else{
map.put(nums[i],1);
}
}
int target = length/2;
for(Map.Entry<Integer,Integer> entry : map.entrySet()){
int value = entry.getValue();
if(value > target){
return entry.getKey();
}
}
return 0;
}
}
最优解
摩尔投票
思路:
候选人candNum初始化为nums[0],票数count初始化为1。
当遇到与candNum相同的数,则票数count=count+1。
否则票数-1。
一旦count为0时,更换候选人。
遍历完数组之后,candNum即为最终答案。
原理解释:
该方法属于投票法
投票法是遇到相同的则票数+1,不同的票数-1。且众数元素的个数大于总元数的一半,其余元素的个数肯定小于一般。
因此多数元素的个数-其余元素的个数总和的结果肯定>=1。这就相当于按照这种抵消策略。最后肯定会剩余至少1个多数元素。
之前我脑子里一直有那种类似这样的例子:
1 2 1 3 1 4 1 5 。这个纯粹就是我少想了,一定是大于半数。注意是大于。所以这个思路完全行得通。
class Solution {
public int majorityElement(int[] nums) {
if(nums.length==1){
return nums[0];
}
int length = nums.length;
int candNum = nums[0];
int count = 1;
for(int i = 1;i<length;i++){
if(count==0){
candNum = nums[i];
}
if(nums[i]==candNum){
count++;
}else{
count--;
}
}
return candNum;
}
}
234 回文链表
主要思路:
先找到中间节点:通过快慢指针,fast一次两步,slow一次一步。然后将后半段链表逆置。然后进行回文的逻辑判断即可。
关键点。其实不用考虑中间若是多一个节点的情况,多出来的那个节点完全不会比较到,因为没有比这个元素的机会,当少1个元素的链表遍历完的时候,我循环比较的逻辑就停止了。
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public boolean isPalindrome(ListNode head) {
if(head.next==null){
return true;
}
ListNode fast = head;
ListNode slow = head;
while(fast!=null && fast.next!=null ){
slow = slow.next;
fast = fast.next.next;
}
//此时slow已经在中。然后将后面的链表逆置了
ListNode pre = null;
ListNode cur = slow;
while(cur!=null){
//存后一个节点
ListNode next = cur.next;
cur.next = pre;
pre = cur;
cur = next;
}
//现在来进行回文的判断
ListNode l1 = head;
ListNode l2 = pre;
while(l1!=null && l2!=null){
if(l1.val!=l2.val){
return false;
}
l1 = l1.next;
l2 = l2.next;
}
return true;
}
}
53 最大子数组和
有了前面的积累,我终于能直接看懂动态规划的题解了。也终于知道状态转移方程怎么用了。
这里可以总结一下心路历程:
看懂动态规划之前有这样的历程:首先动态规划不是上来就有的。首先应该是暴力递归解法。将递归树画出来后,我们可以发现可以优化的点,那就是递归的过程存在很多的重复计算,那这个时候就需要“备忘录”来存储重复的计算。那么这个时候我们对这颗树做优化,你会发现这个递归树突然就变成了o(n)的量级。从递归树来看,那直接就是一路归并,值指最优值。
而这个归并正是状态转移方程。所以为什么很多题解给个初始状态,给个状态转移方程就说这个题就做完了。所以说,有时感觉这个题有很多种走法,但偏偏为什么动态规划是最优走法,就是这个原因。
本题动态规划思路:
dp[i]表示以nums[i]结尾的最大子数组和。然后一般我们从后往前思考。
分类讨论:
我把这种推导过程称之为拼与不拼。不拼那么就重起一个子数组了。
情况1:nums[i] 单独组成一个子数组,那么dp[i] = nums[i]。这种情况是纯在的,比如-1,-2,-5,7,-2,-3。那么以7这个位置为结尾的最长子数组和应该只有7本身。
情况2:将nums[i]和前面的子数组拼起来,也就是以nums[i-1]结尾的最大子数组和之和添加nums[i]。那么此时dp[i] = f[i-1]+nums[i]。
那么这个原问题和子问题的关系就很明确了。
由于每个元素都有可能是最长子数组和的结尾元素。那么可写出这个递推公式
f[i] = max(f[i-1],0) + nums[i]。
自己理解一下这个公式,这个状态转移方程的意思就是上面的两种情况。
如果f[i-1]比0还小,那说明把前面的子数组加起来是没有收益的,那么就要重起一个子数组了,此时前面这个式子值为0。此时f[i] = nums[i]。
如果你是非常清楚dp的套路。那么我告诉你一个结论,然后一个公式你应该就做完了。
1、dp[i]表示以nums[i]结尾的最长子数组的和。
2、状态转移方程:
初始状态那么就是dp[0],那么就是以nums[0]结尾的最长子数组,那么dp[0]= nums[0]。
3、循环迭代计算dp数组,然后找出以哪个为值为结尾的子数组和最大。然后返回这个最大值。
class Solution {
public int maxSubArray(int[] nums) {
int[] dp = new int[nums.length];
dp[0] = nums[0];
int ans = dp[0];
for(int i = 1;i<nums.length;i++){
dp[i] = Math.max(dp[i-1],0) + nums[i];
ans = Math.max(ans,dp[i]);
}
return ans;
}
}