深度学习课堂总结——第四次

文章介绍了YOLO(YouOnlyLookOnce)目标检测系统,包括包围框的计算、归一化的处理以及损失函数。接着讨论了非极大值抑制(NMS)在训练过程中的作用。此外,文章还探讨了语义分割,特别是FCN(全卷积网络)的应用,以及反卷积和反池化在FCN中的角色。最后,提到了循环神经网络(RNN)在自然语言处理(NLP)中的应用,如文本预处理和词嵌入。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 YOLO


包围框

我们有个s^2框,每个框的 bb 个数为 𝐵,分类器可以识别出 𝐶种不同的物体,那么所有整个 ground truth 的长度为 𝑆×𝑆×(𝐵×5+𝐶)。

在YOLO v1中,这个数量为30

 

 

归一化

四个关于位置的值,分别是𝑥,𝑦,ℎ和 𝑤,均为整数,实际预测中收敛慢

 

 置信度

损失函数

 

训练与NMS
NMS核心思想是:选择得分最高 的作为输出,与该输出重叠的 去掉,不断重复这一过程直到 所有备选处理完。

 

 

 

 2语义分割与FCN

 语义分割:找到同一画面中的不同类型目标区域

基本思想

 

基本思想:滑动窗口

 FCN网络如下所示:

反卷积与反池化

 FCN具体实现

 

训练结果

 3 循环神经网络与NLP模型

 文本预处理与词

 

嵌入

 文本嵌入

 RNN模型

本预处理与词嵌入

 

 

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值