1 YOLO
包围框
我们有个s^2框,每个框的 bb 个数为 𝐵,分类器可以识别出 𝐶种不同的物体,那么所有整个 ground truth 的长度为 𝑆×𝑆×(𝐵×5+𝐶)。
在YOLO v1中,这个数量为30
归一化
四个关于位置的值,分别是𝑥,𝑦,ℎ和 𝑤,均为整数,实际预测中收敛慢
置信度
损失函数
训练与NMS
NMS核心思想是:选择得分最高 的作为输出,与该输出重叠的 去掉,不断重复这一过程直到 所有备选处理完。

2语义分割与FCN
语义分割:找到同一画面中的不同类型目标区域
基本思想
基本思想:滑动窗口
FCN网络如下所示:
反卷积与反池化
FCN具体实现
训练结果
3 循环神经网络与NLP模型
文本预处理与词
嵌入
文本嵌入
RNN模型
文本预处理与词嵌入