自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 【Caffe笔记】四.Slover

1.Solver简介    Solver通过协调Net的前向推断计算和反向梯度计算来对参数进行更新,从而达到减小loss的目的。Caffe模型的学习被分为了两部分:Solver进行更新优化参数,Net进行计算loss和gradient。    Caffe所支持的solvers如下:        Stochastic Gradient Descent(type: "SGD")        Ada...

2018-03-23 11:31:37 243

原创 【Caffe笔记】三.Loss

    与大多机器学习模型一样,在caffe中,学习由一个损失函数(误差,代价,目标函数)所驱动。一个损失函数将参数集(网络权值)映射到一个可以标识这些参数“不良程度”的标量值来学习目标。学习的目标是找到最佳的参数集使得损失函数最小。    在caffe中,损失是通过网络的前向计算得到的。每一层由一系列的输入blobs(bottom)产生输出blobs(top)。这些层的某些输出可以用作损失函数。...

2018-03-23 10:10:45 337

原创 【Caffe笔记】二.Forward and Backward(前传/反传)

    前传和后传是一个网络最重要的计算过程。1.前传    前传过程为给定的待推断的输入计算输出,Caffe组合每一层的计算一得到整个模型的计算函数,自底向上进行。2.反传    反传过程根据损失来计算梯度从而进行学习,Caffe通过自动求导并反向组合每一层的梯度来计算整个网络的梯度,自顶向下进行。    反传过程以损失开始,根据输出计算梯度。根据链式准则,逐层计算出模型其余部分的梯度。3.Ca...

2018-03-22 22:32:43 1636

原创 【Caffe笔记】一.Caffe模型解释

     前言:        此系列文章是作者看CaffeCN官方教程中译本过程中做下的笔记,方便自己以后翻阅及有需要的人翻阅。        官方文档中译本下载地址:http://caffecn.cn/?/page/tutorial    Caffe使用blobs结构来存储,交换,处理网络中正向和反向迭代的数据(data)和导数信息(diff)。blob是Caffe中的标准数组结构。Layer...

2018-03-22 21:19:19 2394

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除