动态规划-背包问题

01背包

问题描述:

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi

求解将哪些物品装入背包,可使这些物品的总体积不超过V,且总价值最大。

数据范围

0<N,V≤1000
0<vi,wi≤1000

时间复杂度

O(n2)

递推公式
//f[i][j]表示用前i件物品,体积不超过j的选法中能获取的最大价值
f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);

for(int i = 1; i <= n; i++)
    for(int j = v[i]; j <= m; j++)
        f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);

//将空间优化成一维,第二层循环j(体积)要从后往前
//f(i)[j] = max(f(i)[j], f(i - 1)[j - v[i]] + w[i])    (i)为优化掉的部分
f[j] = max(f[j], f[j - v[i]] + w[i])
    
for(int i = 1; i <= n; i++)
    for(int j = m; j >= v[i]; j--)
        f[j] = max(f[j], f[j - v[i]] + w[i]);
代码实现
#include <iostream>

using namespace std;

const int N = 1010;

int n,m;
int f[N];
int v[N], w[N];

int main(){
    cin >> n >> m;
    for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];

    for(int i = 1; i <= n; i++)
        for(int j = m; j >= v[i]; j--)
            f[j] = max(f[j], f[j - v[i]] + w[i]);

    cout << f[m];
    return 0;
}

完全背包

问题描述

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 i 种物品的体积是 vi,价值是 wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

数据范围

0<N,V≤1000
0<vi,wi≤1000

时间复杂度

O(n2)

递推公式
//f[i][j]表示使用前i件物品,体积不大于j的选法中的最大价值
f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + w[i] * k)
    
for(int i = 1; i <= n; i++)
    for(int j = v[i]; j <= m; j++)
        for(int k = 0; k * v[i] <= j; k++)
            f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
/**
优化:
f[i][j] = max(f[i - 1][j], f[i - 1][j - v] + w, f[i - 1][j - 2v] + 2w, f[i][j - 3v] + 3w, ... ,);
f[i][j - v] = max(         f[i - 1][j]        , f[i - 2][j -  v] +  w, f[i][j - 2v] + 2w, ... ,);
↓↓↓↓↓↓↓↓↓↓↓↓↓↓由上面两式推出以下关系↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
f[i][j] = max(f[i][j - v], f[i - 1][j]);
*/
//由此关系,可以不用循环k了,递推公式和01背包问题非常相似,但循环j(体积)要从前往后
f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i])
//优化空间,注意优化的i和01背包有何不同,此时循环j(体积)是从前往后
f[j] = max(f[j], f[j - v[i]] + w[i]);

for(int i = 0; i < n; i++)
    for(int j = v[i]; j <= m; j++)
        f[j] = max(f[j], f[j - v[i]] + w[i]);

代码实现
#include <iostream>

using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N];

int main()
{
    cin >> n >> m;
    for(int i = 0; i < n; i++) cin >> v[i] >> w[i];
    
    for(int i = 0; i < n; i++)
        for(int j = v[i]; j <= m; j++)
            f[j] = max(f[j], f[j - v[i]] + w[i]);
    
    cout << f[m];
    return 0;
}

多重背包

问题描述

有 N 种物品和一个容量是 V 的背包。

第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

数据范围

0<N,V≤100
0<vi,wi,si≤100

时间复杂度

O(n3)

递推公式
//f[i][j]表示使用前i件物品,体积不大于j的选法中的最大价值
//跟完全背包一样,只是商品选用次数由限制了
f[j] = max(f[j], f[j - s * v[i]] + s * w[i])
代码实现
#include <iostream>

using namespace std;

const int N = 110;

int n, m;
int f[N];

int main()
{
    cin >> n >> m;
    for(int i = 0; i < n; i++){
        int v, w, s;
        cin >> v >> w >> s;
        for(int j = m; j >= v; j--)
            for(int k = 1; k <= s && k * v <= j; k++)
                f[j] = max(f[j], f[j - k * v] + k * w);
    }
    cout << f[m];
    return 0;
}

多重背包Ⅱ

问题描述

有 N 种物品和一个容量是 V 的背包。

第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

数据范围

0<N≤1000
0<V≤2000
0<vi,wi,si≤2000

时间复杂度

O(nvlogs)

递推公式
代码实现
#include <iostream>

using namespace std;

const int N = 11000;

int n, m;
int f[N], v[N], w[N];

int main()
{
    cin >> n >> m;
    int cnt = 0;
    while(n--){
        int a, b, s;
        cin >> a >> b >> s;
        int k = 1;
        while(k <= s){
            v[cnt] = k * a;
            w[cnt] = k * b;
            s -= k;
            k <<= 1;
            cnt ++;
        }
        if(s > 0){
            v[cnt] = s * a;
            w[cnt] = s * b;
            cnt ++;
        }
    }
    
    n = cnt;
    for(int i = 0; i < n; i++)
        for(int j = m; j >= v[i]; j--)
            f[j] = max(f[j], f[j - v[i]] + w[i]);
    cout << f[m];
    return 0;
}

分组背包

问题描述

有 N 组物品和一个容量是 V 的背包。

每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。

输出最大价值。

数据范围

0<N,V≤100
0<Si≤100
0<vij,wij≤100

时间复杂度

O(n3)

递推公式
f[j] = max(f[j], f[j - v[i][k]] + w[i][k])
代码实现
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 110;

int n, m;
int f[N], s[N];
int v[N][N], w[N][N];

int main()
{
    cin >> n >> m;
    for(int i = 0; i < n; i++){
        cin >> s[i];
        for(int j = 0; j < s[i]; j++){
            cin >> v[i][j] >> w[i][j];
        }
    }
    
    for(int i = 0; i < n; i++)
        for(int j = m; j >= 0; j--)
            for(int k = 0; k < s[i]; k++)
                if(j >= v[i][k])
                    f[j] = max(f[j], f[j - v[i][k]] + w[i][k]);
                    
    cout << f[m];
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值