动态规划经典问题:01背包问题

问题重述:

有 N件物品和一个容量是 W 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 ii 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤10000<N,V≤1000
0<vi,wi≤10000<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

8

 

问题解决: 

应用动态规划设计使多阶段决策过程达到最优,依据动态规划的最优性原理:最优决策序列中的任何子序列都是最优的。

所以我们解决该问题的代码核心即为,我们把此问题拆分为多个子问题,并通过求出每个子问题的最优解推出最优决策序列。

我们可以在代码中使用一个二维数组dp[i][j]来存放子问题的最大价值,i为目前到第几个物品的最优解,j为递推背包所承的重量,dp[i][j]所存储的数据为最大价值数。

我们使用V[i]来存放物品重量,W[i]来存放物品价值

接下来我们就可以确定递推关系:

当所选择的V[i]<j时,不可能选择该物品放入背包,所以

dp[i][j]=dp[i-1][j]

当所选择的V[i]>=j时,此时有两种情况;

1.不装物品

此时的最大效益为dp[i][j]=dp[i-1][j]

2.装物品

最大效益为dp[i][j]=dp[i][j-V[i]]+w[i]

装物品可能比较难理解,可以尝试这么理解:

本身在背包承重为i时背包已经装满了,如果需要选择装物品的情况,则需要给该物品留出V[i]的空间,而留出V[i]空间后的最大价值为dp[i][j-V[i]],再加上此物品的价值w[i]即可。

代码实现:

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 1010;
int main() {
	int n, v,i,j;
	int dp[N][N];						
	int V[N], W[N];
	cin >> n >> v;
	dp[0][0] = 0;
	for (i = 1; i <= n; i++) {
		cin >> V[i] >> W[i];
	}
	for(i=1;i<=n;i++)
		for (j = 1; j <= v; j++) {					//dp[i][j],i为目前到第几个物品的最优解,j为背包目前所承的重量,dp[i][j]所存储的数据为最大价值数
			dp[i][j] = dp[i - 1][j];				//默认为后一个物品不选择
			if (j >= V[i]) {
				dp[i][j] = max(dp[i][j], dp[i - 1][j - V[i]] + W[i]);
			}
		}
	cout << dp[n][v];
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值