01背包问题动态规划

主要是写出递归的公式和判断输出的条件。


#include "stdafx.h"
#include<stdio.h>
#define number 4
#define wmax 8
int vm[number+1][wmax+1] = {0};                 //一张4+1*8+1的表vm,代表当包里有i件商品,用了j的容量时得到的价值
int v[number+1] = { -1,3,4,5,6 };               //单件商品的价值
int w[number+1] = { -1,2,3,4,5 };              //单间商品的重量
void  maxvalue(int *v, int *w)
{
	int i, j;
	for(i=1;i<=number;i++)                                           //这里两个for来填一张vm的表
		for (j = 1; j <= wmax; j++)
		{                                               //一下就是递归的公式了,条件分为j<w[i]和j>=w[i]
			if (j < w[i])                //剩下的容量不足以装i,装不下了
			{
				vm[i][j] = vm[i - 1][j];
			}
			else                                                          //对于这种情况要确定装还是不装的价值更大
			{
				if (vm[i - 1][j] > vm[i - 1][j - w[i]] + v[i])           //不装,价值就和前一个状态一样,包容量不发生变化
					vm[i][j] = vm[i - 1][j];                                                    
				else
					vm[i][j] = vm[i - 1][j - w[i]] + v[i];                //装,价值加了新商品的价值,容量减少新商品的容量
			}

		}
	printf("最好的情况是:得到%d价值的商品\n", vm[number][wmax]);
}
void PRINT(int i,int  j)
{
	int flag[100] = { 0 };                           //这个数组也可以不要,用来判断该商品是不是被装走了
	if (i >= 0)
	{
		if (vm[i][j] == vm[i - 1][j])                      //如果i、 i-1前后两个价值相等,证明商品还在
		{
			flag[i] = 0;
			PRINT(i - 1, j);                               //往前查找

		}
		else if (j - w[i] >= 0 && vm[i][j] == vm[i - 1][j - w[i]] + v[i])         //如果i件商品的总价值和i-1总价值加上单个i商品的价值相同,那就装上了第i个商品   
		{
			flag[i] = 1;
			printf("商品%d,重量%d,价值%d\n", i, w[i], v[i]);
			PRINT(i - 1,j - w[i]);
		}
	}

}

int  main()
{
	maxvalue(v, w);
	PRINT( number, wmax);
	return 0;
}



动态规划的精髓我还是没有领会到啊,得好好琢磨一下建表的意义,以及那些表到底里面包含些内容,怎样调取其中的内容得到自己想要的元素。
可以参考了这位博主的分析https://www.cnblogs.com/Christal-R/p/Dynamic_programming.html。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值