20220911- LC第310场周赛
讨论:https://leetcode.cn/circle/discuss/s55Iwu/
6176. 出现最频繁的偶数元素(AC)
给你一个整数数组 nums ,返回出现最频繁的偶数元素。
如果存在多个满足条件的元素,只需要返回 最小 的一个。如果不存在这样的元素,返回 -1 。
示例 1:
输入:nums = [0,1,2,2,4,4,1]
输出:2
解释:
数组中的偶数元素为 0、2 和 4 ,在这些元素中,2 和 4 出现次数最多。
返回最小的那个,即返回 2 。
示例 2:
输入:nums = [4,4,4,9,2,4]
输出:4
解释:4 是出现最频繁的偶数元素。
示例 3:
输入:nums = [29,47,21,41,13,37,25,7]
输出:-1
解释:不存在偶数元素。
提示:
1 <= nums.length <= 2000
0 <= nums[i] <= 105
思路:排成逆序后遍历哈希表计数
class Solution {
public:
int mostFrequentEven(vector<int>& nums) {
sort(nums.begin(),nums.end(),greater<int>());
unordered_map<int,int> cnt;
int maxCnt = 0;
int res = -1;
for(int i : nums){
cnt[i]++;
if(i % 2 == 0 && cnt[i] >= maxCnt){
maxCnt = cnt[i];
res = i;
}
}
return res;
}
};
6177. 子字符串的最优划分
给你一个字符串 s ,请你将该字符串划分成一个或多个 子字符串 ,并满足每个子字符串中的字符都是 唯一 的。也就是说,在单个子字符串中,字母的出现次数都不超过 一次 。
满足题目要求的情况下,返回 最少 需要划分多少个子字符串。
注意,划分后,原字符串中的每个字符都应该恰好属于一个子字符串。
示例 1:
输入:s = “abacaba”
输出:4
解释:
两种可行的划分方法分别是 (“a”,“ba”,“cab”,“a”) 和 (“ab”,“a”,“ca”,“ba”) 。
可以证明最少需要划分 4 个子字符串。
示例 2:
输入:s = “ssssss”
输出:6
解释:
只存在一种可行的划分方法 (“s”,“s”,“s”,“s”,“s”,“s”) 。
提示:
1 <= s.length <= 105
s 仅由小写英文字母组成
思路:以为是滑动窗口,完全想不到是贪心,估计是惯性思维。
int partitionString(string s) {
unordered_map<char,int> umap;
int res = 1;
for(char c : s){
umap[c]++;
if(umap[c] > 1){
res++;
umap.clear();
umap[c] = 1;
}
}
return res;
}
6178. 将区间分为最少组数
给你一个二维整数数组 intervals ,其中 intervals[i] = [lefti, righti] 表示 闭 区间 [lefti, righti] 。
你需要将 intervals 划分为一个或者多个区间 组 ,每个区间 只 属于一个组,且同一个组中任意两个区间 不相交 。
请你返回 最少 需要划分成多少个组。
如果两个区间覆盖的范围有重叠(即至少有一个公共数字),那么我们称这两个区间是 相交 的。比方说区间 [1, 5] 和 [5, 8] 相交。
示例 1:
输入:intervals = [[5,10],[6,8],[1,5],[2,3],[1,10]]
输出:3
解释:我们可以将区间划分为如下的区间组:
- 第 1 组:[1, 5] ,[6, 8] 。
- 第 2 组:[2, 3] ,[5, 10] 。
- 第 3 组:[1, 10] 。
可以证明无法将区间划分为少于 3 个组。
示例 2:
输入:intervals = [[1,3],[5,6],[8,10],[11,13]]
输出:1
解释:所有区间互不相交,所以我们可以把它们全部放在一个组内。
提示:
1 <= intervals.length <= 105
intervals[i].length == 2
1 <= lefti <= righti <= 106
思路:
熟悉的区间类问题,完全想不到用优先队列可以分组,有些类似于253会议室问题,还是做太少了。
static bool cmp(vector<int> &lhs, vector<int> &rhs){
return lhs[0] < rhs[0];
}
int minGroups(vector<vector<int>>& inv) {
sort(inv.begin(), inv.end(), cmp);
//用一个优先队列维护每个组最大的终点
priority_queue<int, vector<int>, greater<int>> pq;
pq.push(inv[0][1]);
for(int i = 1; i < inv.size(); i++){
//发生重叠,新增组终点
if(pq.top() >= inv[i][0]){
pq.push(inv[i][1]);
}
//没发生重叠,更新当前组终点
else{
pq.pop();
pq.push(inv[i][1]);
}
}
return pq.size();
}