题目要求:定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的min函数。在该栈中,调用min、push及pop的时间复杂度都是O(1).
参考题目:剑指offer第21题.
题目分析:
1.采用面向对象思想,定义类StackWithMin,包含min、push和pop等方法;
2.StackWithMin类中包含两个栈:一个数据栈,一个辅助栈。数据栈中是每次压入的实际数据,辅助栈中是对应数据栈的当前结点的最小值。
解释:假设数据栈为stackdata,辅助栈为stackmin;令压栈数据依次为5-3-4-1-2;
则压入5:stackdata:5 , stackmin:5
压入3:----->stackdata:5-3 , stackmin:5-3
压入4:----->stackdata:5-3-4 , stackmin:5-3-3
压入1:----->stackdata:5-3-4-1 , stackmin:5-3-3-1
压入2:----->stackdata:5-3-4-1-2, stackmin:5-3-4-1-1
stackdata即为压入的实际数据,stackmin中每次压入的数据和之前stackmin中的输入比较,如果比之前的小则压入当前,如果比之前的大则压入之前的数据。
#include <iostream>
#include <stack>
#include <cassert>
using namespace std;
template<class T>
class stackWithMin
{
public:
stackWithMin(){}
~stackWithMin(){}
void push(const T& value);
void pop();
const T& min() const;
void printStack();
private:
stack<T> stackData;
stack<T> stackMin;
};
template<class T>
void stackWithMin<T>::push(const T& value)
{
stackData.push(value);
//辅助栈为空或者压入的元素小于辅助栈的栈顶元素,则压入当前元素;否则压入栈顶元素
if(stackMin.empty() || stackMin.top()>value)
stackMin.push(value);
else
stackMin.push(stackMin.top());
}
template<class T>
void stackWithMin<T>::pop()
{
assert(stackData.size()>0 && stackMin.size()>0);
stackData.pop();
stackMin.pop();
}
template<class T>
const T& stackWithMin<T>::min() const
{
assert(stackData.size()>0 && stackMin.size()>0);
return stackMin.top();
}
template<class T>
void stackWithMin<T>::printStack()
{
stack<T> tmp;
cout << "当前栈中元素有:";
while(stackData.size())
{
tmp.push(stackData.top());
stackData.pop();
}
while(tmp.size())
{
stackData.push(tmp.top());
cout << tmp.top();
tmp.pop();
}
cout << endl;
}
int main(void)
{
stackWithMin<int> minStack;
minStack.push(5);
minStack.printStack();
cout << "最小元素为:" << minStack.min() << endl;
minStack.push(3);
minStack.printStack();
cout << "最小元素为:" << minStack.min() << endl;
minStack.push(4);
minStack.printStack();
cout << "最小元素为:" << minStack.min() << endl;
minStack.push(1);
minStack.printStack();
cout << "最小元素为:" << minStack.min() << endl;
minStack.push(2);
minStack.printStack();
cout << "最小元素为:" << minStack.min() << endl;
return 0;
}