A column generation-based heuristic for aircraft recovery problem with airport capacity constraints and maintenance flexibility 论文笔记
1.Abstract
我们考虑了机场容量限制和维修灵活性的飞机恢复问题(ARP)。问题是重新安排航班和实时重新分配飞机,使航空公司在中断发生后的恢复成本降至最低。在大多数已发表的研究中,机场容量和灵活维护不是通过优化方法同时考虑的。为了弥补这一缺陷,我们提出了一种列生成启发式算法来解决这一问题。该框架包括飞机航线选择的主问题和航线生成的子问题。主问题中明确考虑了机场容量,子问题中可以包含可切换计划维护。该方法不采用现有文献中广泛采用的离散延迟模型,而是在子问题中连续和准确的优化。连续延迟模型可使优化回收成本的精度提高37.74%。基于实际问题的计算研究表明,主问题具有非常紧的线性松弛性,并且具有很小的、通常为零的最优性缺口。大型问题可以在6分钟内解决,通过在更强大的硬件上并行化子问题,可以进一步缩短运行时间。
2.Related work and Contributions
Maher对机组人员和飞机恢复问题进行了column-and-row generation;
Bratu和Bamhart提出了两种恢复模型,乘客行程延迟和取消的情况都在公式中估计;
Bisaillon设计了一个大规模的社区搜索启发式算法;
2016年开发了一种同时恢复飞机和乘客的数学启发式算法
1.airport capacity,Airport congestion is a critical cause of delays in the current air transpo-
rt system.we propose a column generation heuristic to solve the aircraft recovery