A column generation-based heuristic for aircraft recovery problem with airport capacity constraints

本文提出了一种列生成启发式算法解决机场容量限制和维修灵活性的飞机恢复问题。通过主问题和子问题的框架,考虑机场容量和维修的连续延迟模型,提高了优化精度,能在较短时间内解决大型问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A column generation-based heuristic for aircraft recovery problem with airport capacity constraints and maintenance flexibility 论文笔记
1.Abstract
我们考虑了机场容量限制和维修灵活性的飞机恢复问题(ARP)。问题是重新安排航班和实时重新分配飞机,使航空公司在中断发生后的恢复成本降至最低。在大多数已发表的研究中,机场容量和灵活维护不是通过优化方法同时考虑的。为了弥补这一缺陷,我们提出了一种列生成启发式算法来解决这一问题。该框架包括飞机航线选择的主问题和航线生成的子问题。主问题中明确考虑了机场容量,子问题中可以包含可切换计划维护。该方法不采用现有文献中广泛采用的离散延迟模型,而是在子问题中连续和准确的优化。连续延迟模型可使优化回收成本的精度提高37.74%。基于实际问题的计算研究表明,主问题具有非常紧的线性松弛性,并且具有很小的、通常为零的最优性缺口。大型问题可以在6分钟内解决,通过在更强大的硬件上并行化子问题,可以进一步缩短运行时间。
2.Related work and Contributions
Maher对机组人员和飞机恢复问题进行了column-and-row generation;
Bratu和Bamhart提出了两种恢复模型,乘客行程延迟和取消的情况都在公式中估计;
Bisaillon设计了一个大规模的社区搜索启发式算法;
2016年开发了一种同时恢复飞机和乘客的数学启发式算法
1.airport capacity,Airport congestion is a critical cause of delays in the current air transpo-
rt system.we propose a column generation heuristic to solve the aircraft recovery

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值