【Hadoop】JobQueueTaskScheduler

JobQueueTaskScheduler作为Hadoop JT的默认调度器,基于优先级和提交时间进行任务调度。调度策略考虑了资源利用率、系统吞吐率、数据本地性等。文章探讨了如何通过负载因子、数据局部性、减少IO负载以及留有余地的策略来优化调度,以平衡集群中各个TaskTracker的工作负载。
摘要由CSDN通过智能技术生成

JobQueueTaskScheduler是JT默认的任务调度器,其本质上维护一个priority-based FIFO作业队列,基本的机制是优先调度高优先级/提交时间早的作业。但是,具体的调度策略需要综合考虑一系列的问题,比如cluster资源利用率、系统吞吐率、任务data locality等等。在复杂的集群环境和不同的系统负载下,完美的调度策略是不可能的,从Hadoop早期的jira讨论中可以发现,最终的调度策略往往是经过激烈地讨论和在大集群下不断benchmark得出的权衡。下面将从几个重点的设计因素出发,来学习该调度器的策略。


单个TaskTracker利用率

最初,JT调度器每次heartbeat只为TT分配一个task,这显然不利于充分利用TT,比较极端的情况是,每个task的运行时间都小于heartbeat interval,这样TT同时总是只能有一个task在运行。于是,HADOOP-3136提出每次heartbeat应该为分配多个task。因此,assignTask方法中出现这样的loop:

for (int i=0; i < availableMapSlots; ++i) {
        for (JobInProgress job : jobQueue){
...
}
}

TaskTracker集群均衡负载

前面提到为了提高单个TT利用率,每个heartbeat要分配多个task。这带来一个问题:在一次heartbeat中,如果总是最大限度的分配

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值