这个题目的意思是:一个数组中所有的数字除了一个数字只出现一次外,其他的都出现了3次,要求用最快的速度和最小的空间找到该数字。
这个问题主要是考察位运算的,采用第一种比较简单且容易理解的方法:对于32位的int类型数据,统计每个位为1的数字的个数,如果个数不是3的倍数,则表示要找的数字在该位上为1,这样就可以找出那个只出现1次的数字了。
代码如下:
int singleNumber(int A[], int n) {
int ans = 0;
for(int i = 0; i < 32; i++){
int radix = 1 << i;
int c = 0;
for(int j = 0; j < n; j++){
if(A[j]&radix)
c += 1;
}
if(c%3) ans |= radix;
}
return ans;
}
在上面的基础上可以做一些修改,可以设置3个变量,ones,twos,threes 。其中
ones是一个位掩码,表示第i个bit位出现了1次。
twos是一个位掩码,表示第i个bit位出现了2次。
threes是一个位掩码,表示第i个bit位出现了3次。需要注意的是如果第i位出现了3次,则需要将ones和twos的第i位清零。
代码如下:
int singleNumber(int A[], int n){
int ones = 0,twos = 0,threes = 0;
for(int i = 0; i < n; i++){
twos |= (ones & A[i]);
ones ^= A[i];
threes = ones&twos;
ones &= (~threes);
twos &= (~threes);
}
return ones;
}
还有一种更加简洁的方法,不过这个方法不利于扩展。
int singleNumber(int A[],int n){
int ones = 0,twos = 0;
for(int i = 0; i < n; i++){
ones = (ones^A[i]) & ~twos;
twos = (twos ^ A[i]) & ~ones;
}
return ones;
}