自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1529)
  • 收藏
  • 关注

原创 35岁程序员必看!AI大模型转型全攻略:从零基础到实战项目,建议收藏学习

本文为35+程序员提供大模型转型指南,分为三阶段:基础知识准备(数学、Python、深度学习框架)、进阶学习(NLP、大模型理论、项目实践)和职业发展(研究深化、技能提升、人脉建设)。还提供七阶段学习路线,涵盖大模型系统设计、提示词工程、平台应用开发、知识库应用、微调开发及多模态应用,助程序员成功转型AI大模型领域。

2025-12-15 14:09:38 1368

原创 35+程序员必看:大模型学习不再晚,经验是你的最大优势,非常详细收藏我这一篇就够了

35+人士学习AI具有独特优势:成熟心态、丰富职场经验和高效学习能力。30+人群在AI领域拥有市场需求洞察力和工作流拆解能力等竞争优势。系统学习路线图和资料对掌握AI大模型技术至关重要,包括提示词工程、RAG系统和智能体开发等核心内容。学习资料包含大厂案例、提示词模板库和0基础到实战的学习路径图,已上传CSDN可免费领取。AI岗位需求旺盛,初级工程师平均薪资达28K,掌握AI技术可实现职业突破。学习分为初阶应用、高阶应用、模型训练和商业闭环四个阶段,2个月即可入门AI领域。

2026-01-16 15:20:29 589

原创 大模型知识库构建利器:TextIn xParse 文档解析全测评

TextIn xParse是合合信息推出的智能文档解析工具,擅长处理复杂文档(含跨页表格、合并单元格等),可将PDF、Word等转为结构化数据。相比传统OCR,它能保留标题层级、段落关系等语义信息,支持导出Markdown/JSON/Excel格式。实测显示其对无线表格、嵌套表头等复杂场景解析效果优异,适合企业知识库构建和RAG应用优化。提供在线体验、API接入等多种使用方式,是处理复杂文档的理想选择。

2026-01-16 15:18:48 831

原创 RLLaVA:多模态大模型强化学习的轻量级利器,算法研究必备工具

RLLaVA:轻量级多模态大模型强化学习框架 RLLaVA是一个专为多模态大模型强化学习研究设计的轻量级框架,采用"RL-Centric"设计理念,实现算法与分布式工程的深度解耦。该框架通过插件化组件、直观代码编排和原生torchrun范式,显著降低研究门槛。其全栈模块化设计支持从模型组件到系统接口的标准化,使研究者能在单张24GB显存显卡上运行实验。框架继承TinyLLaVA Factory的解耦思想,将复杂VLM抽象为可组合的标准模块,并提供符合PyTorch/HuggingFace

2026-01-16 15:15:49 523

原创 用“公司决策“类比揭开大模型黑箱,BuPO方法让AI推理能力飙升(附开源代码)

BuPO方法创新性地将大语言模型策略分解为内部层次策略,采用自下而上的优化范式,先强化底层推理能力再优化整体决策。实验证明该方法在数学推理等复杂任务中显著提升模型表现,Qwen3-8B模型在AIME24测试中提升4.58分。研究还揭示了不同模型的独特推理模式:Llama呈现"跳跃式"决策,而Qwen3展现渐进式三阶段推理。该方法为LLM优化提供了透明化、可解释的新思路,已开源实现,标志着AI模型优化进入"精准医疗"时代。

2026-01-16 15:14:38 681

原创 大模型智能体记忆管理新范式:Agentic Memory框架详解

阿里巴巴与武汉大学联合提出Agentic Memory(AgeMem)框架,解决大语言模型智能体在长周期任务中的记忆管理问题。该框架通过统一工具接口集成长期记忆(LTM)和短期记忆(STM),采用三阶段渐进式强化学习策略和逐步式GRPO机制。实验表明,AgeMem在多个基准测试中显著提升任务性能和记忆质量,减少提示token使用量,并实现端到端的统一记忆管理。该成果为大语言模型智能体的记忆系统设计提供了新思路。

2026-01-16 15:11:40 582

原创 AI大模型学习路线图:从入门到精通,附独家资料包,小白到专家的进阶指南【2026首发】

本文系统介绍了人工智能学习的完整路线,分为入门、中级、进阶和高级四个阶段。入门阶段需掌握Python编程、数学基础和机器学习知识;中级阶段深入学习算法并进行项目实践;进阶阶段探索自然语言处理、计算机视觉等技术;高级阶段研究深度强化学习和生成模型等前沿领域。文章还提供了包含书籍、报告、视频等资源的大模型学习资料包,帮助学习者从零基础逐步成长为AI专业人士。

2026-01-15 14:22:01 634

原创 Qwen3-VL大模型核心技术揭秘:多模态融合与长程理解机制详解

Qwen3-VL是Qwen系列新一代多模态大模型,采用三模块架构(视觉编码器、融合模块、语言模型),通过SigLIP-2视觉编码器、DeepStack多层次注入和Interleaved MRoPE位置建模等创新技术实现高效多模态融合。模型采用四阶段渐进式预训练策略(对齐→多模态→长上下文→超长序列)和三级后训练体系,在保持语言能力的同时显著提升视觉理解与生成能力,特别在长视频理解和复杂推理任务中表现突出。MoE架构设计(如235B总参数/22B激活参数)实现了高性能与推理效率的平衡。

2026-01-15 14:19:03 900

原创 程序员转型大模型产品经理必看:收藏这份详细学习路线_大模型产品经理学习路线详述

本文系统性地规划了大模型产品经理的学习路线,涵盖技术基础、产品管理理论和实战经验三大部分。内容包括数学统计、编程技能、深度学习基础、Transformer架构解析、数据处理与性能优化等核心技术,以及用户研究、敏捷开发等产品管理知识。学习路径还强调了参与开源项目、开展个人实践和建立行业人脉的重要性。文章最后提供了AI大模型学习的详细资料获取方式,包括思维导图、书籍、视频教程和面试题库等资源,帮助学习者全面掌握大模型产品开发的核心能力。

2026-01-15 13:54:19 561

原创 一文搞懂大模型智能体工作原理:从PEAS模型到TAO循环,小白也能轻松入门!

本文系统解析了大模型智能体的工作原理:通过PEAS模型(性能指标、环境、执行器、传感器)定义智能体任务场景,揭示其面对的不完整、不稳定环境特性;详细阐述了"感知→思考→行动→再次感知"的智能体循环机制,重点说明Thought-Action-Observation模式如何结构化输出,实现语言推理与真实世界操作的连接。文章还提供了AI大模型学习路径及资源获取方式,帮助开发者掌握智能体开发的核心技术。

2026-01-15 13:52:54 454

原创 收藏必备!情境工程:大模型时代企业知识管理系统的革命性变革

文章摘要:情境工程正重塑企业知识管理范式,推动从"被动检索"到"主动赋能"的转变。系统通过场景感知、知识图谱和AI协同实现动态连接,构建五层架构:多模态获取、图谱构建、情境编排、自然交互和反馈进化。这种模式使决策质量、组织能力和创新效率显著提升,如某银行投资建议接受率提高40%。实施路径需分场景试点、数据治理和文化培育三步走,未来将向预测性推送和沉浸式体验演进,最终实现"以人为中心"的知识价值释放。

2026-01-15 13:48:58 817

原创 大模型产品经理成长全攻略:零基础到精通的完整路径_大模型产品经理学习路线

大模型产品经理学习路线:从零基础到高薪进阶 本文系统梳理大模型产品经理的成长路径,涵盖五大核心阶段:计算机基础、大模型技术、产品管理、项目实战和持续提升。当前行业存在47万人才缺口,初级岗位平均薪资达28K。文章提供90天速成计划,分四阶段(初阶/高阶应用、模型训练、商业闭环)帮助学习者掌握核心技术。包含实用资源包:提示工程模板、RAG系统指南、智能体开发教程等,适合程序员和AI从业者快速转型。通过系统学习,零基础者可实现薪资翻倍增长,抓住AI时代职业红利。

2026-01-14 15:16:47 1337

原创 Claude Skills深度解析:大模型智能体架构与Gemini 3对比分析

Claude Skills是智能体的模块化能力组件,包含结构化指令、可执行脚本和资源文件,实现动态加载和渐进式披露;Agent SDK则提供智能体的运行环境,包括权限控制和执行机制。相比Gemini 3的内化能力设计,Anthropic采用外挂式模块化架构,解决了传统AI系统的认知过载和上下文浪费问题,标志着从提示词工程向技能工程的范式转变。这种架构使智能体能按需调用专业能力,同时保持核心模型的轻量高效。

2026-01-14 15:15:48 903

原创 建议收藏:大模型时代程序员新机遇:6大高薪岗位技能要求全解析

摘要:文章系统分析了程序员转型大模型的5大方向:NLP工程师、计算机视觉工程师、大模型算法工程师、部署工程师和产品经理。从市场需求、技术要求和职业前景等维度,详细阐述了每个方向的核心技能,包括编程能力、数学基础、专业知识和实践经验。文章指出,程序员应结合自身优势选择适合的方向,通过针对性学习实现职业转型,把握AI时代的发展机遇。各岗位均需掌握相关领域知识,同时强调实践经验的重要性。

2026-01-14 15:14:41 930

原创 收藏这份AI客服构建指南:有赞从0到1的实践经验与思考

有赞分享了AI客服系统从0到1的实践历程。项目从黑客马拉松起步,初期采用Dify平台快速验证,后期转向混合架构解决性能瓶颈。文章详细阐述了模型选择、Workflow设计、上下文管理和知识工程等关键技术环节,包括:保守的意图识别策略、结构化上下文信息、多维知识整合(商品/历史对话/文档)以及持续优化机制。实践表明,采用渐进式工作流设计、结构化信息组装和实时动态信息注入能有效提升系统性能。这些经验为构建高效AI客服系统提供了重要参考。

2026-01-14 15:13:37 735

原创 GraphJudge:利用双LLM协同构建高质量知识图谱的创新方法

如何系统学习大模型AI?建议分三个阶段: 基础夯实:掌握机器学习、深度学习基础,熟练Python和PyTorch/TensorFlow框架 专项突破:深入Transformer架构,学习Prompt工程、微调方法(LoRA等)和分布式训练技术 实践进阶:参与开源项目(如LangChain),实战大模型开发全流程,持续跟进最新论文和技术动态 建议通过MOOC课程+开源项目+论文复现的组合方式进行系统性学习,同时保持对HuggingFace等开源社区的持续关注。

2026-01-14 15:11:56 727

原创 大模型算法工程师年薪百万,这可能是你最好的职业选择_今年大模型这工资是认真的吗?

大模型技术爆发带来算法工程师"黄金期",薪资远超传统IT岗位。一线大厂纷纷扩招AI人才,提供百万年薪。针对企业需求与求职者能力差距,《AI算法工程师培养计划》由大厂专家团队打造,通过十大企业级项目实战,确保98%贴合企业需求。课程承诺应届生年薪不低于29万,在职者薪资涨幅40%-50%,未达标全额退款。已有学员成功转型,最高月薪达75K,为不同背景人士提供AI职业发展路径。

2026-01-12 20:59:49 1245

原创 程序员、产品经理、项目经理、普通人转行AI大模型教程,这份超详细学习指南请收藏!

本文为Java程序员提供了向AI大模型开发转型的完整指南,详细阐述了五个关键步骤:1)学习机器学习基础;2)掌握TensorFlow/PyTorch等工具;3)提升编程能力;4)补充数学知识;5)项目实践。文章分析了Java程序员在转型中的优势,并列举了AI大模型时代涌现的7大新兴技术岗位,如AI工程师、模型架构师等。同时提供了AI工程师需要掌握的知识图谱,包括数学基础、编程技能、机器学习算法等核心内容,帮助程序员系统规划学习路径,抓住AI时代的发展机遇实现职业升级。

2026-01-12 20:58:02 550

原创 大模型Function Calling实战指南:从原理到代码,让AI更强大

大模型函数调用(Function Calling)技术详解:通过结构化函数注册实现外部服务交互,提升AI应用能力。与ReACT相比,Function Calling更适合明确定义的单步工具调用,支持API调用、数据库查询等场景。核心概念包括工具列表、函数定义及参数说明,通过Python示例展示如何执行计算任务获取准确结果。大模型通过tool_calls返回函数调用请求,实现与外部服务的智能交互。

2026-01-12 20:49:58 642

原创 DeepSeek V4即将发布:中国AI的破局之作,能否颠覆编程领域?

DeepSeek宣布将于2026年春节发布编程专用大模型V4,剑指全球AI编程领域巅峰。该模型突破性地解决了大模型训练中的"灾难性遗忘"问题,能在保持通用能力的同时大幅提升编程性能。同时,DeepSeek将R1论文从22页扩充至86页,公开了四阶段训练管线等核心技术细节,展现技术自信。这一动作标志着中国AI企业正从技术追随者转变为规则制定者,直接挑战OpenAI和Anthropic在编程AI领域的领先地位。随着V4的发布,AI编程领域或将迎来新一轮洗牌。

2026-01-12 20:48:35 1048

原创 收藏学习!AI如何克服“金鱼记忆“?从RAG到AgentRAG再到记忆增强系统详解

AI记忆机制经历了从RAG到Agentic RAG再到AI Memory的演进过程,实现了从"瞬时响应"到"终身学习"的转变。RAG通过检索增强生成提供上下文,但存在噪声问题;Agentic RAG引入智能代理优化检索流程;AI Memory则通过读写机制实现个性化服务。这一发展使AI能持续学习用户偏好,但也带来记忆管理、遗忘机制等新挑战。文章还提供了大模型AI的系统学习路径,包括提示词工程、RAG系统开发等核心内容。

2026-01-12 20:47:18 747

原创 大模型工程师转型攻略:四大核心能力,轻松入门高薪岗位,非常详细收藏我这一篇就够了

文章指出大模型应用工程师门槛并不高,无需顶尖学历和论文,而是看重四大核心能力:提示工程、RAG检索增强生成、模型微调和工程部署能力。通过多个真实转型案例证明,传统程序员只要将工程能力迁移到模型训练和优化环节,就能成功转型。当前工具成熟、生态开放、需求爆发,是转型大模型领域的最佳时机,建议通过系统学习和项目实践快速入门。

2026-01-11 20:58:20 1102

原创 DeepSeek V4即将发布:中国AI的破局之作,能否颠覆编程领域?

DeepSeek计划于2026年春节发布旗舰模型V4,这是一款针对编程能力深度优化的专业模型,目标超越OpenAI GPT和Anthropic Claude。V4解决了大模型训练中的"灾难性遗忘"问题,可在保持原有能力的同时大幅提升编程能力。同时,DeepSeek R1论文从22页更新至86页,公开了更多技术细节。这标志着中国AI厂商正从"追赶者"转变为"定义者",在全球AI领域发起正面挑战。

2026-01-11 20:56:49 583

原创 AI如何克服“金鱼记忆“?从RAG到AgentRAG再到记忆增强系统详解

AI记忆机制经历了从RAG到Agentic RAG再到AI Memory的三阶段演进:RAG实现检索增强生成但存在噪声问题;Agentic RAG通过智能代理优化检索流程;AI Memory引入读写机制实现个性化服务。这一进化使AI具备持续学习能力,但也面临记忆管理的新挑战。文章还提供了系统学习大模型的四阶段路径(应用开发→高阶实践→模型训练→商业落地),并分享了大模型学习资料包。

2026-01-11 20:55:42 766

原创 前端程序员转型大模型:高薪就业必备技能全攻略_作为前端程序员该如何转行大模型?说说我的经验

摘要:文章分享前端开发者转型大模型领域的成功经验,指出行业风口选择的重要性。详细分析大模型技术对前端开发的赋能价值,包括提升交互体验、实现个性化内容、优化搜索推荐等。提供系统学习路径:从数学基础到Python编程,从机器学习理论到框架实践,强调项目经验积累。文章最后分享大模型学习资源,帮助程序员把握AI时代机遇,实现技术升级与职业突破。(149字) 精简版:文章分享前端转大模型的成功经验,分析技术融合价值,提供系统学习路径与资源,助力程序员把握AI机遇实现转型。(50字)

2026-01-10 14:53:31 1182

原创 【必收藏】零基础学大模型:从概念应用到实战,一篇搞定!

本文系统介绍了大模型的基础知识,包括LLM和多模态两大核心类型及其区别,开源与闭源模型的特点对比,以及内容生成、信息处理、创意辅助三大应用场景。文章通过生活化比喻和职场实例,帮助零基础读者理解大模型如何提升工作效率,并针对不同需求给出选择建议。特别强调清晰表达需求(prompt)的重要性,为读者提供了实用的大模型入门指南。

2026-01-10 14:52:10 865

原创 AI赋能安全运营:基于Splunk MCP的自主调查智能体构建指南(收藏学习)

本文提出了一种基于Splunk MCP服务器与LangChain/LangGraph框架构建SOC分析智能体的创新方案。该方案通过自然语言交互实现SPL查询自动生成与执行,解决了安全分析师学习周期长、工作流割裂等痛点。系统采用模块化架构,包含需求解析、SPL生成、查询执行、威胁分析和报告生成五个核心环节,支持人机协同审批机制。实验表明,该方法能有效提升安全运营效率,使分析师专注于战略决策。文章还分享了开源实现代码,并展望了多源数据关联、自动化剧本执行等未来发展方向,为人机协同的安全运营新模式提供了实践路径。

2026-01-10 14:36:35 887

原创 Claude四件套Skills/MCP/Projects/Prompts详解:小白也能看懂的入门指南

本文深入解析Claude四大新功能:Skills赋予AI工具调用能力,解决"不能动手"问题;MCP作为数据连接协议,实现工具标准化接入;Projects提供长期上下文管理,避免重复输入背景信息;Prompts将复杂指令模板化,提升交互效率。四者形成完整层级关系:MCP为底层协议,Skills扩展能力边界,Projects和Prompts直接面向用户提升体验。文章还提供30分钟快速搭建指南,帮助用户通过创建Project、配置Skills、建立Prompts库等步骤,打造高效的Claude

2026-01-10 14:35:37 999

原创 AI智能体质量保证新范式:构建可信系统的完整框架,大模型学习必备收藏

《Agent Quality》提出AI智能体质量评估新框架,强调传统方法已无法应对非确定性智能体的挑战。文章从有效性、效率、鲁棒性和安全合规四个维度构建评估体系,采用"由外及内"的分层评估方法,结合自动化指标、LLM评估和人机协同验证。通过日志、链路追踪和评估指标实现智能体可观测性,建立持续改进的质量飞轮机制。核心原则包括将评估融入架构设计、关注完整执行轨迹而非单一结果,以及保持人类在关键决策中的最终裁决权。该框架为构建可信赖的智能体系统提供了系统性解决方案。

2026-01-10 14:34:34 952

原创 AI大模型开发学习指南:助你实现90%就业率和年薪72w+_AI爆了!最高年薪72w!

【AI大模型开发课程助力高薪就业】 AI大模型开发课程就业数据亮眼:平均就业率超90%,最高年薪达72万,应届生起薪15k+。课程通过3.5个月系统培训,涵盖6大学习阶段和12个实战项目,帮助学员快速掌握核心技能,达到2年工作经验水平。当前AI行业人才缺口巨大,普通学历者通过系统学习也能实现高薪转型。课程提供从基础应用到模型训练的全链路学习方案,助力学员抓住AI浪潮机遇,成为市场稀缺的高端技术人才。(注:宣传数据需结合个人学习效果与行业实际)

2026-01-08 21:19:33 999

原创 AI产品经理VS普通产品经理:AI思维才是核心竞争力,程序员必学技能

AI产品经理与普通产品经理的核心差异在于AI思维而非算法理解。文章系统梳理了AI产业链的三层结构(基础层、技术层、应用层),提出AI产品经理的四象限分类模型(突破型、创新型、应用型、普及型),并给出能力提升建议。针对AI产品设计特点,强调"前端简单、后端复杂"的智能系统构建原则。最后提供大模型学习的系统方法和资源,帮助不同背景从业者快速入门。文章指出AI技术仍处发展初期,掌握AI能力将获得先发优势。

2026-01-08 21:15:52 569

原创 MemR3:给大模型记忆系统装一个“会思考的小脑“,准确率提升5-9%

MemR3:突破大模型记忆检索瓶颈的闭环迭代技术 MemR3创新性地将检索系统转化为可自我反思的智能体,解决了传统RAG系统"单次盲搜"的痛点。该技术通过Router、Evidence-Gap Tracker和LangGraph三大组件,构建了检索-反思-回答的闭环迭代流程,并引入(ℰ,𝒢)状态变量实时追踪证据与信息缺口。实验显示,MemR3可提升现有RAG/Zep系统5-9%的QA准确率,特别在多跳和时序问题上效果显著。作为即插即用的控制器,它无需改动现有架构即可部署,显著提升了大模

2026-01-08 21:14:02 662

原创 【值得收藏】Agent-Graph:构建强大多智能体系统的完整教程

Agent-Graph是一款开源多智能体系统,提供Agent管理、可视化Workflow编排、Subagent任务分解、双层记忆架构等核心功能。支持团队协作、任务调度和对话分享,可导出训练数据。项目包含完整文档和体验平台,适合构建复杂AI工作流。开源地址:https://github.com/keta1930/mcp-agent-graph,网站体验:https://agent-graph.com/。

2026-01-08 21:11:09 908

原创 企业知识管理新范式:用ChatWiki+大模型实现“一问即答“[必学收藏]

ChatWiki:企业级AI知识库构建平台 摘要:ChatWiki是一款企业级AI知识库平台,通过4步操作(接入AI模型、创建知识库、配置机器人、智能应答)将分散文档转化为可对话的智能资产。它解决知识孤岛、更新低效和交互割裂三大痛点,适用于新员工培训、销售赋能和客户服务等场景。平台支持20+主流AI模型接入,自动处理多格式文档,提供全渠道部署能力,实现"一问即答"的智能查询体验,显著提升企业工作效率和客户满意度。

2026-01-08 21:09:57 740

原创 数据分析背景如何转向大模型?4个高适配岗位全解析_想转岗AI大模型?看这篇就够了!

本文为数据分析师转向AI大模型领域提供职业转型指南,重点推荐四个适配岗位:大模型数据工程师(适配性5星)、AI应用开发工程师(4星)、大模型算法工程师初级(2星)和AI产品经理(3星)。文章详细解析了各岗位的核心职责、技能要求及与数据分析背景的匹配度,并附赠大模型学习资源包(含104G学习资料、100套商业化方案及200本专业书籍),帮助求职者根据自身条件选择最佳转型路径,为春招做好充分准备。

2026-01-07 21:31:47 766

原创 AI时代五大类新职业发展趋势深度解析,程序员必看指南

文章探讨了AI对就业的四大效应(增强、替代、补充、创造),指出AI替代短期快于创造但并不等同于失业。当前AI新职业主要分为使能者、协作者、治理者、推广者和支持者五类,呈现深度细分、跨界融合、人机协作和动态流变特征。未来职业增长将集中在AI原生、服务业和灵活就业三大领域,个人需提升AI素养,企业应构建人机协作模式,社会需搭建就业友好制度环境。

2026-01-07 21:30:50 837

原创 RAG 2.0 深入解读,非常详细收藏我这一篇就够了

本文探讨了RAG 2.0时代面临的主要挑战与关键技术升级。RAG技术已从1.0的文本处理扩展到多模态融合和复杂任务处理,但仍存在检索质量、计算效率、安全隐私等核心问题。关键技术包括混合检索(结合BM25、稠密/稀疏向量)、DPR双编码器架构等,通过三路混合检索显著提升召回率。模块化架构演进使RAG具备类Agent的反思能力,但多模态支持不足、语义鸿沟、幻觉问题等仍是重要挑战。未来需进一步优化检索精度、计算效率及安全机制,推动RAG在生产场景的深度应用。

2026-01-07 21:29:48 977

原创 AI 产品经理三年经验总结:除了 Prompt 工程,这 4 个隐性能力更决定晋升

刚入行时,我和很多 AI 产品新人一样,把 80% 精力花在卷 Prompt 工程 —— 背提示词模板、练多轮对话技巧,以为把模型 “喂” 明白就能出成绩。直到去年参与公司智能客服项目,看着同组另一位三年经验的同事,没比我多会几个 Prompt,却能牵头搞定技术团队的算法优化、说服业务方调整需求优先级,最后率先晋升为高级产品,我才突然醒悟:AI 产品的晋升密码,藏在那些 “看不见” 的隐性能力里。

2026-01-07 21:28:19 948

原创 AI Coding后端开发实战,非常详细收藏我这一篇就够了

摘要:本文探讨了AI时代下如何高效利用AI Coding工具进行后端开发。首先指出开发者常见的两大误区:过度依赖AI最终输出和错误将AI视为业务专家。随后提出系统性解决方案:1)构建个人上下文管理体系,通过需求理解、文档管理和跨会话记忆传递破解AI上下文限制;2)建立AI输出质量判断体系,从需求理解、代码评估到错误识别形成闭环。文章还提供了标准化开发流程和Python脚本辅助数据处理等实战技巧,强调开发者应从编码者思维升级为架构师思维,在享受AI效率提升的同时保持对代码质量的把控,实现真正的人机协同开发。

2026-01-07 21:26:47 857

原创 AI大模型学习全攻略:从入门到高薪,一篇文章带你吃透技术红利

AI大模型行业人才缺口高达400万,薪资涨幅超40%,应届生年薪可达40-61.8万。为帮助从业者抓住风口,作者提供104G全套学习资料包,包含路线图、视频教程、电子书等资源,覆盖从基础到进阶的7大学习阶段。内容涵盖系统设计、提示词工程、平台开发、微调训练等核心技能,并附100套商业化方案和200本专业书籍。通过系统学习,程序员可掌握大模型全栈开发能力,实现职业突破或成功转行AI领域。资料免费领取,助力从业者抢占技术红利先机。

2026-01-06 21:05:59 1357

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除