数据结构之排序

#include<iostream>
using namespace std;

/*直接输出*/
void output(int a[],int length)
{
    for(int i=0;i<length;i++)
    {
        cout<<a[i]<<" ";
    }
    cout<<endl;
}

/*直接插入排序*/
void InsertSort(int a[],int length)
{
    for(int i=1;i<length;i++)
    {
        int temp=a[i];//待排序
        int j;
        for(j=i-1;j>=0&&temp<a[j];j--)
        {
            a[j+1]=a[j]; //如果待排序比数组元素小,则后移
        }
        a[j+1]=temp;   //此时j是第一个比插入数小的位置,则插入j+1位置
    }
}
/*
二分排序
*/
void BinInsertSort(int a[],int length) //先找到插入位置,再整体后移
{
    for(int i=1;i<length;i++)
    {
        int temp=a[i];
        int left=0;
        int right=i-1;
        while(left<=right)
        {
            int mid=(left+right)/2;
            if(temp>a[mid])
            {
                left=mid+1;
            }
            else right=mid-1;
        }
        for(int j=i-1;j>=left;j--)  //只是减少了比较次数,没有减少移动次数
            a[j+1]=a[j];
        a[left]=temp;
    }
}

/*
希尔排序
选取分量间隔进行插入排序,因为相同
的值可能在不同的分组,排序过程中相对位置可能发生变化,不稳定
*/
void ShellSort(int a[],int length)
{
    for(int gap=length/2;gap>=1;gap=gap/2)  //直到增量为1
    {
        for(int i=gap;i<length;i++)  //第一组为已经排好的,相当于直接插入中的a[0],所以从gap开始
        {
            int temp=a[i];
            int j;
            for(j=i-gap;j>=0&&temp<a[j];j=j-gap)
            {
                a[j+gap]=a[j];
            }
            a[j+gap]=temp;
        }
    }
}

/*冒泡排序*/
void BubbleSort(int a[],int length)
{
    for(int i=0;i<length;i++)
        for(int j=0;j<length-1-i;j++)  //后面i个都是排好的,不需要再比较
         {
            if(a[j]>a[j+1])    //交换位置
            {
                int temp=a[j];
                a[j]=a[j+1];
                a[j+1]=temp;
            }
         }
}
/*
选择排序
每次从无序数组中选择一个最小的出来
*/

void SelectSort(int a[],int length)
{
    int min;
    for(int i=0;i<length-1;i++) //不用进行length次因为最后剩下一个必然是最大
    {
        min=i;     //假设还没排序的第一个就是最小的
        for(int j=i;j<length;j++)
        {
            if(a[j]<a[min]) min=j; //如果有更小的换位置
        }
        int temp=a[i];
        a[i]=a[min];
        a[min]=temp;
    }
}
/*快速排序
 先进行一次快排,再递归对基准数两边的分组进行快排
*/
void OnceQuickSort(int a[],int left,int right)
{
    if(left>=right) return; //要排序的组只要一个元素,说明已经排好,则停止
    int temp=a[left];
    int i=left;
    int j=right;
    while(i!=j)
    {
       if(a[j]>=temp&&i<j)
       {
           j--;
       }
       if(i<j) a[i]=a[j];
       if(a[i]<=temp&&i<j)
       {
           i++;
       }
       if(i<j) a[j]=a[i];
    }
    a[i]=temp;
    OnceQuickSort(a,i+1,right);  //递归排序右边
    OnceQuickSort(a,left,i-1);   //递归排序左边
}
/*
  归并排序
  一次归并两个以begin和end中间值为界的两个数组
  先对原始数组分为两个进行排序,再递归对分好的两个数组继续分裂归并
  递归停止条件为分组中只有一个元素
*/
void OnceMergeSort(int a[],int begin,int end)
{
    if(begin>=end)  return;    //递归停止条件
    int mid=(begin+end)/2;
    int length=end-begin+1;
    OnceMergeSort(a,begin,mid);  //递归调用,分裂排序
    OnceMergeSort(a,mid+1,end);
    int *p=new int[length];       //临时数组
    int k=0; //临时数组下标
    int i,j;
    for(i=begin,j=mid+1;i<=mid,j<=end;)   //将以mid为界分成的两个数组进行一次归并
    {
        if(a[i]<a[j]) p[k++]=a[i++];
        else    p[k++]=a[j++];
    }
    while(i<mid+1)
    {
        p[k++]=a[i++];
    }
    while(j<end+1)
    {
        p[k++]=a[j++];
    }
    for(k=0;k<length;k++)
    {
        a[begin++]=p[k];   //将临时数组复制回原始数组
    }
    delete[] p;
}
/*
  堆排序
  小顶堆,每个父节点的值都比两个子节点的值小
  堆调整:从堆的最后一个节点的父节点开始一次向上调整
  调整一次则堆顶为最小值,删除堆顶元素,将最后一个元素换给堆顶继续调整
*/
void OnceHeapsSort(int a[],int begin,int end)
{
    if(end==1) return;
    for(int i=end/2;i>=begin;i--)  //从堆的最后一个节点的父节点开始一次向上调整
    {
        int temp=a[i];
        int m=i;    //  表示a[i]该放的位置
        for(int j=2*i;j<=end;j=j*2)
        {
            if(j<end&&a[j]>a[j+1]) j++;  //说明该节点有两个子节点,记录小的那个
            if(temp<a[j])   break;       //不必继续往下调整
            a[m]=a[j];                   //将更小的放在a[i]所在位置
            m=j;     //a[i]此时应该放在m位置
        }
        a[m]=temp;   //最后将a[i]放在所在位置
    }
    int temp=a[end];  //将第一个和最后一个交换
    a[end]=a[1];
    a[1]=temp;
    OnceHeapsSort(a,1,end-1);  //再对新的堆进行调整
}
/*基数排序

*/
void LSDSort(int a[],int length)
{
    int n=1;
    int max=a[0];   //获取最大值得到最大数是几位数,则进行几次排序
    int base=1;
    for(int i=0;i<length;i++)
    {
        if(a[i]>max) max=a[i];
    }
    while(max/10)
    {
        n++;
        max=max/10;
    }
    cout<<"基数排序进行"<<n<<"趟排序:"<<endl;
    while(n--)
    {
        int b[10][10]={0};  //用数组存个位数对应的值
        int k=0;
        for(int i=0;i<length;i++)
        {
            int index=a[i]/base%10;   //个位数
            b[index][k++]=a[i];       //放在相应位置下
        }
        k=0;
        for(int i=0;i<10;i++)
        {
            for(int j=0;j<10;j++)
                if(b[i][j]) a[k++]=b[i][j];  //收集
        }
        base=base*10;     //求下一位
    }
}
int main(void)
{
    int a[10]={31,9,15,20,1,49,84,71,10,6};
    int b[11]={10,3,9,5,2,1,4,8,7,0,6}; //堆排序第一个不用
    output(a,10);
   // InsertSort(a,10);
   // BinInsertSort(a,10);
   // ShellSort(a,10);
   // BubbleSort(a,10);
   // SelectSort(a,10);
   // OnceQuickSort(a,0,9);
   // OnceMergeSort(a,0,9);
   //output(a,10);
  // OnceHeapsSort(b,1,10);
  // output(b,11);  //排序过程中数组后面的为先输出来的
    LSDSort(a,10);
    output(a,10);
}

复杂度:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值