利用MATLAB理解常见概率分布

二项分布

在概率论和统计学中,二项分布(英语:Binomial
distribution)是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n= 1时,二项分布就是伯努利分布。二项分布是显著性差异的二项试验的基础。


>> N=100;
>> p=0.5;
>> k=0:N;
>>pdf=binopdf(k,N,p);
>> cdf=binocdf(k,N,p);
>> h=plotyy(k,pdf,k,cdf)

binopdf(k,N,p)函数
表示事件A发生k次的概论
N为实验次数,p为发生概率
binocdf(k,N,p)函数
表示事件A发生次数不大于k次的概率
plotyy(k,pdf,k,cdf)函数
plot只有一个纵坐标,而plotyy有两个纵坐标(左右各一个),两个纵坐标标度有利于图形数据的对比分析
在这里插入图片描述

泊松分布

泊松分布是二项分布n很大而p很小时的一种极限形式 二项分布是说,已知某件事情发生的概率是p,那么做n次试验,事情发生的次数就服从于二项分布。
泊松分布是指某段连续的时间内某件事情发生的次数,而且“某件事情”发生所用的时间是可以忽略的。
泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。

维基百科:

X \displaystyle X X服从参数为 λ \displaystyle \lambda λ 的泊松分布,记为 X ∼ π ( λ ) X ∼ π ( λ ) \displaystyle X\sim \pi (\lambda )X \sim \pi(\lambda) Xπ(λ)Xπ(λ),或记为 X ∼ P ( λ ) X ∼ P ( λ ) \displaystyle X\sim P(\lambda )X \sim P(\lambda) XP(λ)XP(λ).
1、服从泊松分布的随机变量,其数学期望与方差相等,同为参数{\displaystyle \lambda }\lambda : {\displaystyle E(X)=V(X)=\lambda }{\displaystyle E(X)=V(X)=\lambda }

2、两个独立且服从泊松分布的随机变量,其和仍然服从泊松分布。更精确地说,若 X ∼ P o i s s o n ( λ 1 ) \displaystyle X\sim Poisson(\lambda _{1}) XPoisson(λ1) X ∼ P o i s s o n ( λ 1 ) \displaystyle X\sim Poisson(\lambda _{1}) XPoisson(λ1) Y ∼ P o i s s o n ( λ 2 ) \displaystyle Y\sim Poisson(\lambda _{2}) YPoisson(λ2) Y ∼ P o i s s o n ( λ 2 ) \displaystyle Y\sim Poisson(\lambda _{2}) YPoisson(λ2),则 X + Y ∼ P o i s s o n ( λ 1 + λ 2 ) \displaystyle X+Y\sim Poisson(\lambda _{1}+\lambda _{2}) X+YPoisson(λ1+λ2) X + Y ∼ P o i s s o n ( λ 1 + λ 2 ) \displaystyle X+Y\sim Poisson(\lambda _{1}+\lambda _{2}) X+YPoisson(λ1+λ2)

在二项分布的伯努利试验中,如果试验次数n很大,二项分布的概率p很小,且乘积λ= np比较适中,则事件出现的次数的概率可以用泊松分布来逼近。事实上,二项分布可以看作泊松分布在离散时间上的对应物。

x=0:200;
px=poisspdf(x,100); 
plot(x,px)

表示已经观察到事物平均发生lambda次的条件下,实际发生X次的概率
在这里插入图片描述
是不是和二项分布很像?

均匀分布

在概率论和统计学中,均匀分布也叫矩形分布,它是对称概率分布,在相同长度间隔的分布概率是等可能的。 均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为U(a,b)。

均匀分布的期望:均匀分布的期望是取值区间[a,b]的中点(a+b)/2。
均匀分布的方差:var(x)=E[X²]-(E[X])²
var(x)=E[X²]-(E[X])²=1/3(a²+ab+ b²)-1/4(a+b)²=1/12(a²-2ab+ b²)=1/12(a-b)²

 x = rand(1000);
hist(x);
Ex = mean(x);
v = var(x);

在这里插入图片描述

指数分布

用一个知乎的简单解释:
(馒头那个太长就不抄了

可以用等公交车作为例子:
某个公交站台一个小时内出现了的公交车的数量 就用泊松分布来表示
某个公交站台任意两辆公交车出现的间隔时间 就用指数分布来表示

在这里插入图片描述
其中λ > 0是分布的一个参数,常被称为率参数(rate parameter)。即每单位时间内发生某事件的次数。指数分布的区间是[0,∞)。 如果一个随机变量X呈指数分布,则可以写作:X~ E(λ)。 [1]

>> x=0:0.2:20;
>> y1=exppdf(x,3);
y2=exppdf(x,5);
>> hold on;
plot(x,y1,'r');
plot(x,y2,'b');
>> 

hold on 和hold off 函数:
保留/删除上面的图像
exppdf()函数
产生指数分布的概率密度函数

我也来用馒头做一个解释(
比如x=0:0.2:20;
y1=exppdf(x,3);
已经观察到“馒头卖出”事件平均发生lambda次的条件下,实际发生X次的概率

  • 6
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值