普通网友
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
52、音频插件创作与频谱特征描述技巧
本文介绍了音频插件创作的关键技巧,包括函数调用注意事项、处理不支持可变大小信号的方法以及枚举参数映射的使用。同时,详细解析了频谱特征的计算和应用,如频谱质心、扩展、熵、平坦度等,涵盖其在语音识别、音乐分类、音频场景识别等领域的实际应用。最后,探讨了如何将频谱特征与音频插件结合以提升音频处理和分析的效果。原创 2025-09-05 06:38:12 · 28 阅读 · 0 评论 -
51、MATLAB音频处理:插件使用、实时参数调优与编写技巧
本文详细介绍了MATLAB中音频处理的相关技术,包括在模型中使用音频插件、利用VGGish嵌入进行深度学习音频分类、实时参数调优方法、音频插件编写技巧等内容。通过具体操作步骤、代码示例及实际应用场景,帮助开发者掌握高效音频处理的方法,避免常见错误。适用于音频开发、工业监测、智能语音交互等多个领域。原创 2025-09-04 11:15:11 · 68 阅读 · 0 评论 -
50、Simulink音频处理:功能与操作指南
本文详细介绍了如何使用 Simulink 进行多种音频处理操作,包括倍频程滤波、音频采集与播放、通道映射、动态增益控制、音频特效生成、滤波器设计、深度学习音频分类(如使用 YAMNet 检测音乐和空气压缩机声音)等。文章还提供了操作流程、技术细节、流程图和应用场景对比,并探讨了音频处理在智能系统开发和音频质量优化中的拓展应用,适合希望利用 Simulink 进行音频处理的用户参考。原创 2025-09-03 12:12:20 · 59 阅读 · 0 评论 -
49、MATLAB音频处理与代码生成全攻略
本文详细介绍了MATLAB在音频处理和代码生成方面的强大功能,涵盖音频输入输出部署、Simulink模块应用、语音活动检测、噪声抑制、音频均衡、混响模拟等多种音频处理技术。通过具体示例和操作步骤,帮助开发者高效实现音频处理任务,并提供环境配置、参数调整和资源优化等方面的实用建议。原创 2025-09-02 13:30:53 · 42 阅读 · 0 评论 -
48、音频插件开发、分析与调试全指南
本文详细介绍了音频插件的开发、分析与调试全流程,涵盖使用MATLAB音频测试台进行插件测试、参数调整、可视化分析和MIDI同步控制等内容。同时,深入解析了均衡化设计原理及多种滤波器的设计方法,并结合MATLAB Coder实现C代码生成以加速实时音频处理。适合音频开发人员、MATLAB用户及相关技术爱好者参考学习。原创 2025-09-01 16:26:30 · 23 阅读 · 0 评论 -
47、音频动态范围控制与MIDI控制技术详解
本博客详细解析了音频动态范围控制与MIDI控制音频插件的核心技术。在动态范围控制部分,深入探讨了线性与dB转换、增益计算、增益平滑、补偿增益等关键环节,并结合限制器示例说明其具体应用流程。同时,博客还介绍了MIDI控制与MATLAB音频插件的集成,包括MIDI控制表面的配置、连接与参数调整方法。通过综合应用分析,展示了动态范围控制与MIDI控制协同工作的实际场景,为音频处理提供了高效、灵活的技术支持。原创 2025-08-31 09:07:48 · 20 阅读 · 0 评论 -
46、音频测量、合成与控制技术全解析
本文深入解析了音频处理领域的关键技术,包括音频系统脉冲响应测量、MIDI合成器设计与使用、MIDI设备接口操作以及动态范围控制。详细介绍了各种技术的原理、实现步骤以及实际应用,同时提供了MATLAB代码示例,帮助读者更好地理解和应用这些技术。适用于音频工程师、音乐创作者以及相关领域的研究人员。原创 2025-08-30 14:18:23 · 18 阅读 · 0 评论 -
45、音频标注与处理全流程指南
本博客详细介绍了音频标注与处理的全流程,包括标签定义的导出与导入、标注数据的导出、为深度学习准备音频数据存储的方法,以及音频系统脉冲响应的测量和后续操作。同时涵盖了语音转文本和文本转语音的技术实现,提供了常见问题的解决方法和音频处理的注意事项,为音频相关的机器学习和深度学习工作流程提供了全面支持。原创 2025-08-29 15:39:08 · 48 阅读 · 0 评论 -
44、使用Simulink在树莓派上部署智能音箱系统及音频插件设计与音频标注指南
本博客详细介绍了如何使用Simulink在树莓派上部署智能音箱系统,涵盖模型构建、音频输入输出配置、数据类型转换及模型运行等内容。同时,还探讨了基于MATLAB的音频插件用户界面设计方法,包括默认界面、布局样式、背景设置以及自定义控制胶片等。此外,介绍了使用音频标注工具对音频数据进行文件级和区域级标注的方法。博客还总结了相关技术要点,并讨论了其在音频处理和机器学习领域的应用与拓展,为相关领域的研究和开发提供了实用指南。原创 2025-08-28 11:26:29 · 25 阅读 · 0 评论 -
43、音频处理与分析:从脉冲响应测量到事件分类
本文介绍了从音频设备的脉冲响应测量到大型音频文件的可视化,再到基于TensorFlow Lite和树莓派的音频事件分类等一系列音频处理技术。内容涵盖设备设置、信号生成、响应测量、音频数据绘制方法,以及使用预训练模型进行声音分类的完整流程。这些技术在音频工程、系统调试、环境监测和音频创作等领域具有广泛的应用价值。原创 2025-08-27 16:12:34 · 17 阅读 · 0 评论 -
42、音频数据集管理与SOFA文件处理
本博客介绍了如何使用MATLAB管理音频数据集以及处理SOFA文件。针对音频数据集,分别讨论了以文件夹名、文件名和元数据文件作为标签的处理方法,并提供了创建数据存储、组合数据和划分训练集与验证集的具体步骤。对于SOFA文件,详细展示了如何读取、分析和可视化HRTF数据,包括频率响应计算、几何结构查看、能量-时间曲线绘制以及双耳时间延迟估计等内容,为音频信号处理和深度学习模型训练提供了全面的技术支持。原创 2025-08-26 09:26:58 · 29 阅读 · 0 评论 -
41、基于音频的机器健康监测异常检测
本文介绍了如何利用无监督学习方法设计一个基于自编码器的神经网络模型,用于通过音频信号进行机器健康监测和异常检测。文中详细描述了数据的下载、探索、预处理步骤,以及自编码器的网络结构、训练过程和性能评估方法。通过对正常和异常音频样本的重建误差进行分析,实现了对机器异常状态的识别,并通过ROC曲线和AUC指标评估了模型的整体性能。此外,还讨论了模型在不同风扇类型上的适用性及实际应用建议。原创 2025-08-25 11:27:42 · 35 阅读 · 0 评论 -
40、音频处理中的语音增强与滤波器自动设计
本博客介绍了音频处理中的两个关键技术:3-D语音增强和房间均衡音频滤波器的自动设计。在语音增强部分,使用预训练的深度学习模型对Ambisonic音频进行处理,显著提升了语音质量和可懂度,并通过语音转文本和STOI指标进行了验证。在房间均衡部分,结合优化工具箱和音频工具箱,开发了一个自动调整参数均衡器的算法,通过室内测量、目标响应计算、滤波器优化和主观评估,实现了对房间音频系统的频率响应校正。最后,对两种技术的未来发展和潜在应用进行了展望。原创 2025-08-24 12:25:07 · 23 阅读 · 0 评论 -
39、智能音频处理:从模拟智能音箱到3D语音增强
本文介绍了智能音箱系统的模拟实现和基于深度学习的3D语音增强网络训练。智能音箱系统包括语音命令识别、声学波束形成、回声消除、音频输出控制等模块,实现语音驱动的音乐播放与调节。3D语音增强部分采用FaSNet架构结合双路径循环神经网络(DPRNN),通过Ambisonic音频数据训练模型以提升语音质量和可懂度。同时,提供了完整的训练流程、评估方法及支持函数,适用于语音交互系统、语音增强研究及音频信号处理领域。原创 2025-08-23 10:44:22 · 43 阅读 · 0 评论 -
38、深度学习在语音命令识别及相关应用中的实现
本博客探讨了深度学习在语音命令识别及相关应用中的实现。首先介绍了基于预训练网络的语音命令识别流程,包括音频分类、频谱图提取和流式检测。随后展示了如何在Simulink中实现关键词检测,并利用MATLAB实验管理器进行音频迁移学习,比较不同预训练网络的性能。通过合理配置模型和参数,能够实现高效、准确的语音处理。原创 2025-08-22 15:20:52 · 25 阅读 · 0 评论 -
37、利用深度学习可解释性技术进行音频分类研究及树莓派语音命令识别
本博客围绕利用深度学习可解释性技术进行音频分类研究以及在树莓派上实现语音命令识别展开。详细介绍了基于迁移学习对预训练的 VGGish 网络进行再训练以实现音频分类任务的全过程,包括数据加载、预处理、模型构建、训练、测试及使用 Grad-CAM、LIME 和遮挡敏感性等技术对预测结果进行分析。同时,博客还展示了如何在树莓派上开发并部署 Simulink 模型,实现实时语音命令识别,并支持外部模式下监控和显示识别结果。通过完整流程的阐述,为深度学习在音频处理和嵌入式部署的应用提供了实践指导。原创 2025-08-21 14:23:41 · 22 阅读 · 0 评论 -
36、音频处理与建模的多维度实现
本文介绍了音频处理与建模的多维度实现方法,包括使用预训练音频网络YAMNet进行迁移学习以实现音频信号分类;利用Simulink和英特尔MKL-DNN库完成语音命令识别的代码生成与部署;以及基于Simscape对扬声器进行线性和非线性建模的方法。通过详细步骤和应用案例分析,展示了这些技术在工业设备故障检测、智能家居语音控制及音响系统设计等领域的潜在应用价值。原创 2025-08-20 13:43:02 · 21 阅读 · 0 评论 -
35、随机射线追踪的房间脉冲响应模拟与音频特征选择
本博客详细介绍了两种音频处理技术:基于随机射线追踪的房间脉冲响应模拟和音频分类中的特征选择方法。房间脉冲响应模拟利用随机射线追踪技术,考虑了声音的反射、扩散和衍射特性,从而准确建模房间的混响效果。音频分类部分则重点介绍了如何通过特征选择降低数据维度,提高分类模型效率,并展示了使用KNN分类器进行语音识别的完整流程。这些技术广泛应用于虚拟现实、声学建模和语音识别领域。原创 2025-08-19 09:17:51 · 20 阅读 · 0 评论 -
34、音频处理中的3D声音事件定位检测与房间脉冲响应模拟
本博客深入探讨了音频处理中的三项关键技术:3D声音事件定位与检测(SELD)、导入Audacity标签到信号标注器以及房间脉冲响应模拟与HRTF插值。详细介绍了各项技术的实现流程、代码示例及可视化方法,并总结了它们在虚拟现实、智能音频监控和音频特效制作等领域的应用前景。同时,还分析了常见问题及其解决方案,旨在为音频处理和分析提供全面的技术参考。原创 2025-08-18 14:39:36 · 25 阅读 · 0 评论 -
33、音频深度学习:GPU加速特征提取与3D声音事件定位检测
本博客介绍了如何在音频深度学习中利用GPU加速特征提取和数据扩充,从而显著减少模型训练时间并提高效率。同时,博客详细描述了3D声音事件定位与检测(SELD)任务的实现过程,包括数据准备、特征提取、网络设计以及性能评估。通过分别训练声音事件检测(SED)和到达方向(DOA)网络,结合一系列支持函数和优化方法,实现了对音频事件的精准定位和检测,为未来音频处理技术的发展提供了有效思路。原创 2025-08-17 12:36:08 · 35 阅读 · 0 评论 -
32、基于声学的机器故障识别代码生成指南
本文详细介绍了基于声学信号的机器故障识别代码生成方法,分别使用Intel MKL-DNN库和树莓派平台实现。通过MATLAB Coder生成C++代码,结合深度学习网络,实现高效的机械状态预测。文中对比了两种方法的执行性能和适用场景,同时提供了常见问题的解决方法,为不同平台的开发者提供了实践指导。原创 2025-08-16 16:19:57 · 29 阅读 · 0 评论 -
31、语音与声学领域的深度学习应用探索
本博客探讨了深度学习在语音与声学领域的应用,重点分析了说话人识别和声学机器故障识别两个场景。在说话人识别中,比较了标准卷积神经网络(CNN)、Constant Sinc Filterbank 和 SincNet 三种架构的性能,结果显示 SincNet 在准确率和收敛速度方面表现最优。在声学机器故障识别中,采用了基于 LSTM 的网络结构,结合特征工程和数据增强方法(如 mixup),实现了对空气压缩机健康状态和多种故障状态的有效识别。此外,还实现了模型的流式检测,为实际应用提供了参考。通过对比分析两种应用原创 2025-08-15 16:05:46 · 30 阅读 · 0 评论 -
30、树莓派上的语音处理:关键词识别与去混响技术实现
本文详细介绍了如何在树莓派上使用深度学习技术实现关键词识别和语音去混响。关键词识别部分采用BiLSTM网络和MFCC特征提取,并通过MATLAB Coder生成可在树莓派上运行的可执行文件,实现了实时语音信号处理和关键词检测。去混响部分则使用U-Net架构的全卷积网络,通过STFT特征提取、数据归一化、训练与预测等步骤,有效减少了语音中的混响干扰。文章还涵盖了数据预处理、网络训练、性能评估及支持函数实现的完整流程,展示了在嵌入式设备上高效实现语音处理任务的可行性。原创 2025-08-14 10:49:40 · 20 阅读 · 0 评论 -
29、语音数字识别与关键词检测的深度学习实现
本文介绍了基于深度学习的语音数字识别与关键词检测实现方法。通过两种不同的语音数字识别网络训练方式(内存外特征训练和内存外音频数据训练),结合梅尔频率频谱图提取和数据增强技术,有效处理大规模音频数据。此外,还实现了基于 Intel MKL-DNN 的噪声关键词检测代码生成,并对模型性能进行了评估。文章涵盖了数据准备、特征提取、模型定义、训练设置、模型评估、代码生成及优化等关键技术细节,适用于语音助手、智能家居等实际应用场景。原创 2025-08-13 11:06:56 · 19 阅读 · 0 评论 -
28、基于x-vectors的说话人识别与分割技术详解
本文详细介绍了基于x-vectors的说话人识别与分割技术。首先,通过下载和管理LibriSpeech数据集,提取MFCC特征并构建TDNN模型,训练并评估了x-vector特征提取系统。随后,利用预训练模型进行说话人分割,结合凝聚层次聚类(AHC)实现了对音频中不同说话人片段的识别和分割,并通过分割错误率(DER)对系统性能进行了评估。整个流程涵盖了从数据预处理、模型训练到系统评估的完整步骤,适用于语音识别、语音转录、视频字幕等实际应用场景。原创 2025-08-12 10:19:13 · 53 阅读 · 0 评论 -
27、i-vector 分数校准:原理与实践
本文详细介绍了i-vector系统在语音识别中的分数校准技术,包括分数归一化与校准的基本原理、操作流程以及Matlab代码实现。重点分析了两种常用的校准方法——Platt缩放和等渗回归,并通过可靠性图评估校准效果。文中还提供了完整的代码示例及操作步骤,适用于说话人识别系统的开发与优化。原创 2025-08-11 12:52:03 · 49 阅读 · 0 评论 -
26、i-vector分数归一化:提升说话人识别系统性能
本文探讨了i-vector系统中分数归一化技术的应用,重点分析了如何通过自适应对称归一化变体1(S-norm1)来提升说话人识别系统的性能。通过实验分析表明,分数归一化能够有效降低误拒率(FRR)和误受率(FAR),使目标和非目标分数分布更加相似,从而优化决策阈值,提高系统的适应性和稳定性。文章还介绍了相关的支持函数和实际应用中的注意事项,为说话人识别领域的研究和实践提供了重要参考。原创 2025-08-10 09:45:21 · 49 阅读 · 0 评论 -
25、基于i-Vectors的说话人验证技术详解
本文详细介绍了基于i-Vectors的说话人验证系统,涵盖了从数据集管理、特征提取、通用背景模型(UBM)训练、总变异性空间构建,到i-Vector提取、后端处理技术(如LDA和WCCN)以及G-PLDA评分模型的完整实现流程。通过系统化的算法步骤和完整的MATLAB代码示例,帮助读者深入理解说话人验证技术,并提供实践指导。原创 2025-08-09 13:22:20 · 25 阅读 · 0 评论 -
24、音频特征选择与生成对抗网络在声音合成中的应用
本文探讨了音频特征的顺序特征选择方法在语音数字识别中的应用,以及生成对抗网络(GAN)在打击乐声音合成中的应用。顺序特征选择方法可以有效提高识别准确率,而GAN能够生成高质量的音频样本。这些技术在音频处理领域具有广泛的应用前景。原创 2025-08-08 16:03:09 · 20 阅读 · 0 评论 -
23、基于高斯混合模型的说话人验证系统实现
本文详细介绍了基于高斯混合模型(GMM)和通用背景模型(UBM)的文本相关说话人验证系统的实现方法。内容涵盖说话人验证的基本概念、使用预训练模型进行验证、创建通用背景模型、特征提取、模型训练、说话人注册与验证、系统评估等关键步骤。同时提供了完整的MATLAB代码示例,并讨论了优化建议、常见问题解答及未来研究方向,适用于语音安全认证和智能语音交互领域的开发者和研究人员。原创 2025-08-07 09:38:40 · 16 阅读 · 0 评论 -
22、使用MFCC和LSTM网络进行噪声中的关键词识别
本文介绍了如何使用梅尔频率倒谱系数(MFCC)和双向长短期记忆(BiLSTM)网络在噪声环境中进行关键词识别。通过使用预训练网络、流式音频检测、网络训练和数据增强技术,展示了如何提高深度学习模型在嘈杂环境中的关键词识别准确性。同时,还提供了详细的代码示例和训练流程,便于读者复现实验并进行优化。原创 2025-08-06 10:10:38 · 22 阅读 · 0 评论 -
21、实时主动噪声控制与声学场景识别融合技术
本文深入探讨了实时主动噪声控制(ANC)与声学场景识别融合技术的设计与实现。从ANC系统的基本原理出发,详细介绍了前馈模型、Filtered-X ANC模型以及基于Speedgoat的实时实现,并分析了其在不同测试场景下的降噪性能。同时,文章还展示了基于深度学习和小波散射的声学场景识别方法,并通过后期融合技术提升识别准确率。最后,文章总结了该技术在智能家居、智能机器人等领域的应用潜力,并展望了未来的发展方向与技术挑战。原创 2025-08-05 14:30:24 · 22 阅读 · 0 评论 -
20、MIDI控制面与深度学习在音频处理中的应用
本文探讨了MIDI控制面与Simulink模型的交互应用,以及基于小波散射和深度学习的语音数字识别方法。内容涵盖MIDI控制器的连接与配置、Simulink模型交互示例,以及使用SVM、LSTM和DCNN等多种机器学习和深度学习技术对语音数字数据集进行分类的完整流程。同时,还介绍了贝叶斯优化在超参数调优中的应用,并比较了不同方法的测试准确率。原创 2025-08-04 09:25:14 · 24 阅读 · 0 评论 -
19、利用深度学习训练噪声环境下的语音活动检测模型
本文详细介绍了如何在低信噪比(SNR)环境下使用深度学习技术进行语音活动检测(VAD)。通过构建双向长短期记忆网络(BiLSTM),在噪声干扰严重的场景下实现准确的语音区域检测。文章涵盖了数据准备、特征提取、网络训练与评估、迁移学习以及流式语音检测的实际应用。同时比较了不同网络模型的性能,包括流式处理能力、推理速度、网络大小和误差分析,展示了深度学习在语音活动检测中的强大能力。原创 2025-08-03 15:45:51 · 21 阅读 · 0 评论 -
18、音频信号处理:参数均衡器、倍频程滤波器与音高跟踪技术解析
本文详细解析了音频信号处理中的关键技术和实现方法,包括参数均衡器设计、倍频程滤波器的应用以及基于多音高估计和隐马尔可夫模型(HMM)的音高跟踪技术。通过丰富的MATLAB代码示例,展示了如何设计不同类型的滤波器、进行音频信号处理以及音高跟踪系统的实现与优化。这些技术在音频处理、语音识别、音乐信息检索等领域具有重要应用价值。原创 2025-08-02 13:42:39 · 38 阅读 · 0 评论 -
17、使用深度学习网络进行鸡尾酒会声源分离
本博客探讨了如何使用深度学习网络解决鸡尾酒会问题,即从混合的男女语音信号中分离出各自的语音。文章介绍了音频信号的预处理、时频表示、理想掩码的设计以及深度学习模型的构建与训练过程,并通过可视化和音频回放评估了模型的效果。原创 2025-08-01 16:40:13 · 24 阅读 · 0 评论 -
16、音频处理技术:从Ambisonic解码到MIDI转换
本文介绍了音频处理中的三项关键技术:Ambisonic双声道解码、麦克风阵列的多核声学波束形成模拟以及MIDI文件转换为MIDI消息。详细展示了每种技术的原理、具体实现步骤及代码示例,为音频处理从业者和爱好者提供了实用参考。原创 2025-07-31 13:07:13 · 32 阅读 · 0 评论 -
15、深度学习语音命令识别模型训练与Ambisonic插件生成
本博客详细介绍了使用深度学习技术训练语音命令识别模型的完整流程,并探讨了如何在MATLAB中生成Ambisonic插件。语音命令识别部分涵盖数据加载、增强、预处理、特征提取、网络架构设计、模型训练与评估等内容;Ambisonic插件生成部分包括背景知识、支持约定、设备类型、编码器和解码器插件的创建方法。博客还对两种技术的关联性进行了综合分析,提出了性能优化方向及潜在应用拓展。原创 2025-07-30 12:18:06 · 47 阅读 · 0 评论 -
14、使用深度学习网络对语音进行去噪
本文探讨了使用深度学习网络对语音信号进行去噪的方法,重点比较了全连接网络和卷积网络在去除洗衣机噪声中的表现。通过数据预处理、特征提取和网络训练,展示了如何提高语音质量和可懂度。还介绍了测试阶段的步骤和实时应用的实现方式。原创 2025-07-29 16:43:55 · 16 阅读 · 0 评论 -
13、音频处理应用的开发与部署
本文详细介绍了如何利用MATLAB及其相关工具开发和部署多种音频处理应用,包括生成参数化音频均衡器的独立可执行文件、使用MATLAB Compiler部署音频应用程序,以及在Android和iOS设备上实现音频效果。通过这些方法,可以在不同设备和场景中实现音频频率响应调整、混响、回声和动态范围压缩等多种音频处理功能。原创 2025-07-28 14:04:16 · 19 阅读 · 0 评论