LeetCode动态规划题目中遇到两道矩阵题,一个是寻找子矩阵,一个是计算某个子矩阵的和。这里介绍一下他们的处理方法,记录思考。
寻找子矩阵
LeetCode 221 Maximal Square
Given a 2D binary matrix filled with 0’s and 1’s, find the largest square containing only 1’s and return its area.
For example, given the following matrix:
![]()
Return 4.
本题要寻找所给矩阵中最大的全‘1’子方阵。三个限制条件:
① 最大,即边长最长
② 内部全‘1’
③ 方阵,长、宽相等
既然用动态规划算法做,那么就需要考虑使用递归的方法还是非递归的方法。有点像找寻迷宫路线,你是选择从出口往回向入口方向找还是从直接入口开始找。
- 递归通常是将一个大问题拆解为一个个小问题,再依次拆解下去,遇到边界停止。
- 非递归通常是从基本的小问题(一般是顺序遍历)着手,累积到形成一个大问题,遍历完或找到答案位置。
本题适合哪种呢?先来看看全‘1’方阵是怎么形成的。
方阵的具体位置其实只需要两个点就可以了——左上角和右下角。这是大多数时的思维。然而本题有了左上角和右下角,依旧还要考虑这两个点之间是否还有‘0’,比较困难。因此本题的方阵适合由小方阵构造而来。
最小的方阵无疑就是一个‘1’了。边长增加1,意味着对于当前点,其左上角、上方、左方的三个点都应该是‘1’。缺一不可,即有一个‘0’,该方阵都不成立。而如果我们想要知道该方阵的边长呢?其实很简单,针对当前点,从其左上角、上方、左方的三个点中选择一个最小值,再+1,是不是就是以当前点作为右下角的全‘1’方阵的边长呢?这需要另外构建一个矩阵。以题目中的方阵为例,按此法构建后的矩阵如下:
代码如下:
public int maximalSquare(char[][] a) {
if(a.length == 0) return 0;
int m = a.length, n = a[0].length, result = 0;
int[][] b = new int[m+1][n+1];
for (int i = 1 ; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if(a[i-1][j-1] == '1') {
b[i][j] = Math.min(Math.min(b[i][j-1] , b[i-1][j-1]), b[i-1][j]) + 1;
result = Math.max(b[i][j], result); // update result
}
}
}
return result*result;
}
计算子矩阵的和
LeetCode 304 Range Sum Query 2D - Immutable
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).
![]()
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.Example:
Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
]sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12Note:
You may assume that the matrix does not change.
There are many calls to sumRegion function.
You may assume that row1 ≤ row2 and col1 ≤ col2.
public class NumMatrix {
public NumMatrix(int[][] matrix) {
}
public int sumRegion(int row1, int col1, int row2, int col2) {
}
}
/**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix obj = new NumMatrix(matrix);
* int param_1 = obj.sumRegion(row1,col1,row2,col2);
*/
本题是在所给API限制的情况下,先对所给矩阵matrix进行相应处理,然后仅根据矩阵的顶点值直接得出子矩阵的元素和。
其实在对矩阵进行预处理的时候,我们有很多种选择,例如最常想到的,让元素[i][j]的值代表从[0][0]到[i][j]的矩阵值的和。这样实行的话,给我任意两个点,就可以知道这两个点之间矩阵的元素和了。
上图中,矩阵元素和公式:红色=黄色-蓝色-绿色+褐色。
根据这个公式,代码如下:
private int[][] dp;
public NumMatrix(int[][] matrix) {
if( matrix == null
|| matrix.length == 0
|| matrix[0].length == 0 ){
return;
}
int m = matrix.length;
int n = matrix[0].length;
dp = new int[m + 1][n + 1];
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
dp[i][j] = dp[i - 1][j] + dp[i][j - 1] -dp[i - 1][j - 1] + matrix[i - 1][j - 1] ;
}
}
}
public int sumRegion(int row1, int col1, int row2, int col2) {
int iMin = Math.min(row1, row2);
int iMax = Math.max(row1, row2);
int jMin = Math.min(col1, col2);
int jMax = Math.max(col1, col2);
return dp[iMax + 1][jMax + 1] - dp[iMax + 1][jMin] - dp[iMin][jMax + 1] + dp[iMin][jMin];
}