Deque
//栈
Deque<int[]> stack = new LinkedList<>();
stack.push(new int[]{1,2,3});
stack.pop();
stack.peek(); //看栈顶元素
//队列
Deque<int[]> queue = new LinkedList<>();
int[] arr = new int[]{1,2,3};
queue.offer(arr); //入队
queue.poll(); //出队
queue.peek(); //看即将出队的元素
ArrayDeque
//栈
ArrayDeque<int[]> stack = new ArrayDeque<>();
stack.push();
stack.pop();
stack.peek(); //看栈顶元素
//队列
ArrayDeque<int[]> queue = new ArrayDeque<>();
int[] arr = new int[]{1,2,3};
queue.offer(arr); //入队
queue.poll(); //出队
queue.peek(); //看即将出队的元素
LeetCode 636. Exclusive Time of Functions
Given the running logs of n functions that are executed in a nonpreemptive single threaded CPU, find the exclusive time of these functions.
Each function has a unique id, start from 0 to n-1. A function may be called recursively or by another function.
A log is a string has this format : function_id:start_or_end:timestamp. For example, “0:start:0” means function 0 starts from the very beginning of time 0. “0:end:0” means function 0 ends to the very end of time 0.
Exclusive time of a function is defined as the time spent within this function, the time spent by calling other functions should not be considered as this function’s exclusive time. You should return the exclusive time of each function sorted by their function id.Example 1:
Input:
n = 2
logs =
[“0:start:0”,
“1:start:2”,
“1:end:5”,
“0:end:6”]
Output:[3, 4]Explanation:
Function 0 starts at time 0, then it executes 2 units of time and reaches the end of time 1.
Now function 0 calls function 1, function 1 starts at time 2, executes 4 units of time and end at time 5.
Function 0 is running again at time 6, and also end at the time 6, thus executes 1 unit of time.
So function 0 totally execute 2 + 1 = 3 units of time, and function 1 totally execute 4 units of time.Note:
Input logs will be sorted by timestamp, NOT log id.
Your output should be sorted by function id, which means the 0th element of your output corresponds to the exclusive time of function 0.
Two functions won’t start or end at the same time.
Functions could be called recursively, and will always end.
1 <= n <= 100
数据结构明显用栈。
//法一:
public int[] exclusiveTime(int n, List<String> logs) {
// int[] 存储 <id,time>, 每次需要扣除子线程时间时,也要计入time中
// stack 存储 <int[2]>, 记录{id, start_time}
// List<String> logs
if(n <= 0)
return new int[0];
int[] res = new int[n];
Deque<int[]> stack = new LinkedList<>();
for(String log:logs){
String[] log_arr = log.split(":");
if(stack.isEmpty() || log.contains("s")){
int[] start = new int[2];
start[0] = Integer.valueOf(log_arr[0]);
start[1] = Integer.valueOf(log_arr[2]);
stack.push(start);
// stack.push(new int[]{Integer.valueOf(log_arr[0]),Integer.valueOf(log_arr[2])});
}else{
int[] start = stack.pop();
int end = Integer.valueOf(log_arr[2]);
res[start[0]] += end + 1 - start[1];
if(!stack.isEmpty())
res[stack.peek()[0]] -= end + 1 - start[1];
}
}
return res;
}
//法二:父线程分段一点一点加,无需减
public int[] exclusiveTime(int n, List<String> logs) {
// separate time to several intervals, add interval to their function
int[] result = new int[n];
Stack<Integer> st = new Stack<>();
int pre = 0;
// pre means the start of the interval
for(String log: logs) {
String[] arr = log.split(":");
if(arr[1].equals("start")) {
if(!st.isEmpty()) result[st.peek()] += Integer.parseInt(arr[2]) - pre;
// arr[2] is the start of next interval, doesn't belong to current interval.
st.push(Integer.parseInt(arr[0]));
pre = Integer.parseInt(arr[2]);
} else {
result[st.pop()] += Integer.parseInt(arr[2]) - pre + 1;
// arr[2] is end of current interval, belong to current interval. That's why we have +1 here
pre = Integer.parseInt(arr[2]) + 1;
// pre means the start of next interval, so we need to +1
}
}
return result;
}