#include <cstdio>
#include <cstring>
#include <queue>
#include <set>
#define inf 100000000
#define N 505
#define M 20005
#define typec int
using namespace std;
typec Max(typec a,typec b){return a>b?a:b;}
typec Min(typec a,typec b){return a<b?a:b;}
//M为边数 N为点数 点标从1-n
struct Edge
{
int to,nex;
typec flow,cap;
}edge[M<<1];
//双向边,注意RE的情况 注意这个模版是 相同起末点的边 合并流量
int head[N],edgenum;
set<int> ans;
//2个要初始化-1和0
void add(int u,int v,int cap)
{
//网络流要加反向弧
Edge E={v,head[u],0,cap};
edge[edgenum]=E;
head[u]=edgenum++;
Edge E2={u,head[v],0,0}; //这里的cap若是单向边要为0
edge[edgenum]=E2;
head[v]=edgenum++;
}
int dep[N],cur[N];
//距离起点的距离 cur[i]表示i点正在考虑的边 优化不再考虑已经用过的点 初始化为head
bool vis[N],flag;
bool bfs(int Start,int End)//分层
{
memset(vis,0,sizeof(vis));
memset(dep,-1,sizeof(dep));
queue<int> Q;
while(!Q.empty())Q.pop();
Q.push(Start);
dep[Start]=0;
vis[Start]=1;
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int i=head[u];i!=-1;i=edge[i].nex)
{
Edge E=edge[i];
if(!vis[E.to]&&E.cap>E.flow)
{
vis[E.to]=1;
dep[E.to]=dep[u]+1;
if(E.to==End) return 1;
Q.push(E.to);
if(flag) ans.insert(E.to);
}
}
}
return 0;
}
int dfs(int x, int a,int End)
{
//流入x 的流量是a
if(x==End||a==0)return a;
int flow=0,f;
for(int& i=cur[x];i!=-1;i=edge[i].nex)
{
Edge& E=edge[i];
if(dep[x]+1==dep[E.to]&&(f=dfs(E.to,Min(a,E.cap-E.flow),End))>0)
{
E.flow+=f;
edge[i^1].flow-=f;//反向边要减掉
flow+=f;
a-=f;
if(a==0) break;
}
}
return flow;
}
int Maxflow(int Start,int End)
{
int flow=0;
while(bfs(Start,End))
{
memcpy(cur,head,sizeof(head));
flow+=dfs(Start,inf,End);
}
return flow;
}
void init()
{
memset(head, -1, sizeof(head));
edgenum=0;
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
init();
while(m--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
flag=false;
printf("%d ",Maxflow(1,n));
flag=true;
bfs(1,n);
printf("%d\n%d",(int)ans.size()+1,1);
for(auto i:ans)
printf(" %d",i);
puts("");
}
hiho1378 最小割集
最新推荐文章于 2024-07-15 07:43:36 发布
本文详细介绍了一种基于图论的网络流算法实现,包括关键的数据结构定义、增广路径搜索(BFS与DFS结合)、最大流计算及最小割展示等核心步骤。通过具体代码示例,帮助读者理解网络流算法的工作原理及其在实际问题中的应用。
9289

被折叠的 条评论
为什么被折叠?



