题目:
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For num = 5
you should return [0,1,1,2,1,2]
.
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
分析:
输出从0到num用二进制表示时1的个数,且要求时间复杂度为O(n),空间复杂度同样为O(n)。
那么大概可以知道这是一个找规律的题目,那就列个表出来看看吧:
表1:
十进制 | 二进制 | 1的个数 |
0
|
0
|
0
|
1
|
1
|
1
|
2
|
10
|
1
|
3
|
11
|
2
|
4
|
100
|
1
|
5
|
101
|
2
|
6
|
110
|
2
|
7
|
111
|
3
|
8
|
1000
|
1
|
9
|
1001
|
2
|
10
|
1010
|
2
|
11
|
1011
|
3
|
12
|
1100
|
2
|
13
|
1101
|
3
|
14
|
1110
|
3
|
15
|
1111
|
4
|
16
|
10000
|
1
|
17
|
10001
|
2
|
18
|
10010
|
2
|
19
|
10011
|
3
|
20
|
10100
|
2
|
21
|
10101
|
3
|
22
|
10110
|
3
|
23
|
10111
|
4
|
24
|
11000
|
2
|
25
|
11001
|
3
|
26
|
11010
|
3
|
27
|
11011
|
4
|
28
|
11100
|
3
|
29
|
11101
|
4
|
30
|
11110
|
4
|
31
|
11111
|
5
|
32
|
100000
|
1
|
表2:
十进制 | 二进制 | 1的个数 |
0
|
0
|
0
|
1
|
1
|
1
|
2
|
10
|
1
|
3
|
11
|
2
|
4
|
100
|
1
|
5
|
101
|
2
|
6
|
110
|
2
|
7
|
111
|
3
|
8
|
1000
|
1
|
9
|
1001
|
2
|
10
|
1010
|
2
|
11
|
1011
|
3
|
12
|
1100
|
2
|
13
|
1101
|
3
|
14
|
1110
|
3
|
15
|
1111
|
4
|
16
|
10000
|
1
|
17
|
10001
|
2
|
18
|
10010
|
2
|
19
|
10011
|
3
|
20
|
10100
|
2
|
21
|
10101
|
3
|
22
|
10110
|
3
|
23
|
10111
|
4
|
24
|
11000
|
2
|
25
|
11001
|
3
|
26
|
11010
|
3
|
27
|
11011
|
4
|
28
|
11100
|
3
|
29
|
11101
|
4
|
30
|
11110
|
4
|
31
|
11111
|
5
|
32
|
100000
|
1
|
从表1得到,当数字从偶数变为奇数时,1的个数会增加一个。
从表2可以发现数字从奇数变为偶数时,橘色部分的末两位都是由01变为10,且1的个数不变,而黑色部分末两位都是由11变为00,且1的个数普遍会减少。此时的该偶数的1的个数与该偶数/4的那个数一样多。。。。但是写到这里我发现偶数会和该偶数/2的个数一样多。。。于是代码如下。。
代码:
class Solution {
public:
vector<int> countBits(int num) {
vector<int> res;
res.push_back(0);
for(int i=1;i<=num;++i){
int count=res.at(res.size()-1);
if(i%2)res.push_back(count+1);
else{
if(!((i-2)%4))res.push_back(count);
else res.push_back(res.at(i/4));
}
}
return res;
}
};
一个更简洁的:
class Solution {
public:
vector<int> countBits(int num) {
vector<int> res;
res.push_back(0);
for(int i=1;i<=num;++i){
if(i%2)res.push_back(res.at(res.size()-1)+1);
else res.push_back(res.at(i/2));
}
return res;
}
};