CF 333E Summer Earnings

13 篇文章 0 订阅
2 篇文章 0 订阅

题意:给二维平面上的n个点(n<=3000).选其中三个点做圆心,画三个半径相等且不相交的圆(可以相切),问半径最大可以是多少。

解法:可以转化为找一个最短边最长的三角形,圆心在三角形的三个顶点上。把n个点之间的连线长度从大到小排序,一条一条的加入集合中,如果当前当前线段的两个端点有两条在集合中且相交的线段,当前线段即为三角形的最短边。判断是否有交点可以用bitset简单粗暴的完成

关于bitset的用法

Member functions


Bit access :

Bit operations :

Bitset operations :

//time:1479ms
//memory:107200 KB
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bitset>
#include <iostream>
#include <queue>
#define FI first
#define SE second
using namespace std;
const double EPS = 1e-8;
const int MAXN = 3005;
const int INF = 1111111111;
struct Point{
	int x,y;
	void input(){scanf("%d%d",&x,&y);}
}p[MAXN];
struct Node{
	int u,v,d;
	Node(){}
	Node(int a,int b,int c):u(a),v(b),d(c){}
	bool operator <(const Node&a)const
	{
		return d>a.d;
	}
}seg[MAXN*MAXN];
bitset<MAXN> bit[MAXN],tmp;
int main()
{
	//freopen("/home/qitaishui/code/in.txt","r",stdin);
	int n,m=0,u,v,ans;
	scanf("%d",&n);
	for(int i = 0; i < n;i++)
		p[i].input();
	for(int i = 0; i < n; i++)
		for(int j = i+1; j < n; j++)
			seg[m++] = Node(i,j,(p[i].x-p[j].x)*(p[i].x-p[j].x)+(p[i].y-p[j].y)*(p[i].y-p[j].y));
	sort(seg,seg+m);
	//cout<<"*\n";
	for(int i = 0; i < m; i++)
	{
		u = seg[i].u,v = seg[i].v;
		tmp = bit[u]&bit[v];
		//cout<<u<<endl;
		if(tmp.any())
		{
			ans = seg[i].d;
			break;
		}
		bit[u].set(v);
		bit[v].set(u);
	}
	//cout<<ans<<endl;
	printf("%.10f\n",sqrt(1.0*ans)/2);
	return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值