- LCA是什么
LCA就是在一棵树上求出两个点的最近公共祖先。
如图,4和6的最近公共祖先为2。
- LCA的求法
先使两个点的深度相等,如果此时两点所表示的数相同,则这个数就是这两个点的最近公共祖先,不然将它们不断上移,并保持它们表示的数不同,最后输出这两个移出的节点的父亲点。
- 代码实现
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 5e5 + 110;
int d[N], jump[N][21];//d表示深度,jump[i][j]表示i往上跳2^j步
vector<int> v[N];//树
void dfs(int x, int fa, int sum) {
jump[x][0] = fa;
d[x] = sum;
for (int i = 0; i < v[x].size(); i++)
if (v[x][i] != fa)
dfs(v[x][i], x, sum + 1);
}//求父亲点和深度
int lca(int x, int y) {
if (d[x] < d[y]) swap(x, y);//使x点的深度最大
for (int i = 20; i >= 0; i--)
if (d[jump[x][i]] >= d[y])
x = jump[x][i];//使x,y的深度相等
if (x == y)
return x;
for (int i = 20; i >= 0; i--)
if (jump[x][i] != jump[y][i])
x = jump[x][i], y = jump[y][i];
//将它们不断上移,并保持它们表示的数不同
return jump[x][0];
}
signed main() {
int n, m;
cin >> n >> m;
for (int i = 1; i < n; i++) {
int x, y;
cin >> x >> y;
v[y].push_back(x);
v[x].push_back(y);
}//建树
dfs(1, 0, 1);
for (int i = 1; i <= 20; i++)
for (int j = 1; j <= n; j++)
jump[j][i] = jump[jump[j][i - 1]][i - 1];
int a, b;
cin >> a >> b;
cout << lca(a, b);
return 0;
}