【蓝桥杯】 数字诗意

数字诗意

在诗人的眼中,数字是生活的韵律,也是诗意的表达。

小蓝,当代顶级诗人与数学家,被赋予了”数学诗人”的美誉。他擅长将冰冷的数字与抽象的诗意相融合,并用优雅的文字将数学之美展现于纸上。

某日,小蓝静坐书桌前,目光所及,展现着 n 个数字,它们依次为 a1,a2,…,an,熠熠生辉。

小蓝悟到,如果一个数能够以若干个(至少两个)连续的正整数相加表示,那么它就蕴含诗意。

例如,数字 6 就蕴含诗意,因为它可以表示为 1+2+3。

而 8 则缺乏诗意,因为它无法用连续的正整数相加表示。

小蓝希望他面前的所有数字都蕴含诗意,为此,他决定从这 n 个数字中删除一部分。

请问,小蓝需要删除多少个数字,才能使剩下的数字全部蕴含诗意?

输入格式

第一行包含一个整数 n,表示展示的数字个数。

第二行包含 n 个整数 a1,a2,…,an,表示展示的数字。

输出格式

输出一个整数,表示小蓝需要删除的数字个数,以使剩下的数字全部蕴含诗意。

数据范围

对于 30% 的评测用例,1≤n≤ 1 0 3 10^3 103,1≤ai≤ 1 0 3 10^3 103
对于所有评测用例,1≤n≤2× 1 0 5 10^5 105,1≤ai≤ 1 0 16 10^{16} 1016

输入样例:
3
3 6 8
输出样例:
1
样例解释

在样例中,数字 3 可以表示为 1+2,数字 6 可以表示为 1+2+3,数字 8 无法表示为连续的正整数相加,因此,需要删除的数字个数为 1。

【思路分析】

看到这一题我的第一直觉就是用二进制每一位的权值不能表示成连续的正整数相加

于是打表玩了一把

2 0 2^0 20 = 1 (x)

2 1 2 ^ 1 21 = 2 (x)

3 = 1 + 2 (√)

2 2 2^2 22 = 4 (x)

5 = 2 + 3 (√)

6 = 1 + 2 + 3 (√)

7 = 3 + 4(√)

2 3 2^3 23 = 8 (x)

貌似还真的是这样,那么也就是说只有包含奇数因子的数才可以分成连续的正整数相加

我们证明一下

设数N不含有奇数质因子,那么N可以表示为 N = 2 k 2^k 2k,其中k为正整数。

假设N可以分解为m个连续正整数的和,设这m个连续正整数中最小的数为n,则这m个连续正整数的和为:
S = n + ( n + 1 ) + ( n + 2 ) + . . . + ( n + m − 1 ) S = n + (n+1) + (n+2) + ...+(n + m -1) S=n+(n+1)+(n+2)+...+(n+m1)

等差数列求和
S = m ( 2 n + m − 1 ) 2 S = \frac{m(2n+m-1)}{2} S=2m(2n+m1)
如果m是奇数,那么 2n+m - 1是偶数 S = m ( 2 n + m − 1 ) 2 S = \frac{m(2n+m-1)}{2} S=2m(2n+m1)中,m为奇数因子,这与N不含有奇数质因子矛盾。

如果m是偶数,设 m = 2p(p为正整数),则 S = p(2n + 2p + 1)

因为2n + 2p + 1为奇数,若S = N = 2 k 2^k 2k (不含奇数因子的数),此时 2n + 2p + 1 为其中一个奇数因子,这与N不含有奇数因子矛盾。

所以证得如果一个数能够分解为连续个正整数相加,那么这个数一定包含奇数因子

import java.io.*;
import java.util.*;
public class Main {
    public static void main(String[] args) throws Exception {
        BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
        int n = Integer.parseInt(br.readLine());
        long res = 0;
        String[] data = br.readLine().split(" ");
            for(int i = 0; i < n; i++) {
                long d = Long.parseLong(data[i]);
                while(d % 2 == 0) {
                    d /= 2;
                }
                if(d == 1) {
                    res++;
                }
            }
            System.out.print(res);
        br.close();
    }
}
### 蓝桥杯2024省赛C组 数字诗意 题目解析 #### 题目背景与描述 数字诗意是指一段连续整数之和可以表示为某个特定形式的性质。具体来说,在该题目中,一个数字如果能够被表达成至少两个连续正整数的和,则认为这个数字具有“诗意”。然而,某些特殊情况下,比如所有的 $2$ 的幂次方以及数字 $1$ 均不满足此条件[^1]。 #### 解析要点 为了判断某数字是否具备诗意属性,需考虑以下几个方面: 1. **排除特殊情况** 所有形如 $2^n (n \geq 0)$ 的数字均不具备诗意特性,因为它们无法通过任何方式分解为多个连续正整数的和[^2]。此外,单独的数字 $1$ 同样不符合定义中的“至少两个连续正整数”的要求。 2. **算法设计思路** 对于任意给定的自然数 $N$,可以通过枚举可能的起始点 $i$ 和长度 $k$ 来寻找是否存在一组连续整数序列使得其总和等于 $N$。设这些连续整数从 $a_1, a_2, ..., a_k$ 开始,则应满足如下关系: $$ S = i + (i+1) + ... + (i+k-1) = N $$ 这一求和公式可进一步简化为: $$ k * i + \frac{k*(k-1)}{2} = N $$ 即可通过调整参数 $k$ 并计算对应的起点 $i$ 是否合理来完成判定过程。 3. **实现细节** 下面提供了一种基于上述理论框架的具体编程解决方案,采用 Python 编写以便参赛者理解并实践。 ```python def has_poetic_quality(n): if n == 1 or ((n & (n - 1)) == 0 and n != 0): # 判断是否为2的幂或者1 return False for length in range(2, int((2*n)**0.5)+2): # 枚举可能的连续段长度length sum_of_sequence = length * (length - 1) // 2 if (n - sum_of_sequence) % length == 0 and (n - sum_of_sequence) // length > 0: return True return False # 测试函数功能 test_numbers = [7, 8, 9, 15] results = {num: has_poetic_quality(num) for num in test_numbers} print(results) ``` 以上代码片段实现了对单个输入数值是否有诗意特性的检测逻辑,并针对几个典型测试案例进行了验证演示。 --- #### 总结 综上所述,“数字诗意”这一概念的核心在于能否找到一种由若干连续正整数组合而成的形式去匹配目标值。而实际操作过程中需要注意剔除那些天然不可能符合条件的情况(即所有 $2$ 的幂次方),从而提高程序运行效率及准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值