- 博客(7)
- 资源 (2)
- 收藏
- 关注
原创 TorchMobile Android Helloworld 笔记
TorchMobile Android Helloworld 笔记实现Android设备图片识别
2022-03-28 23:07:28 3258
转载 【转载】深度学习正则化
前面几节分别从不同的角度对梯度的优化进行梳理,本节将进行正则化的梳理,所谓正则化,简单来说就是惩罚函数,在机器学习中的SVM中引入拉格朗日乘子法即引入惩罚项解决了约束问题,在稀疏自编码器中我们引入了惩罚因子去自动调整隐层的神经元的个数,以此达到压缩率和失真度的平衡,其实这些都是使用正则思想进行实现的,因此掌握正则化很重要,本节就系统的讲解正则化和数据扩充以...
2022-02-25 10:03:35 302
转载 argparse
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar
2021-12-29 12:39:58 80
转载 【转载】pytorch optimizer.step()
因为有人问我optimizer的step为什么不能放在min-batch那个循环之外,还有optimizer.step和loss.backward的区别;那么我想把答案记录下来。 首先需要明确optimzier优化器的作用, 形象地来说,优化器就是需要根据网络反向传播的梯度信息来更新网络的参数,以起到降低loss函数计算值的作用,这也是机器学习里面最一般的方法论。 从优化器的作用出发,要使得优化器能够起作用,需...
2021-12-06 14:32:31 941
原创 numpy.reshape简介
import numpy as np a=np.array([1,2,3,4,5,6,7,8,9,10,11,12])b=np.reshape(a,(2,-1))c=np.reshape(a,(2,2,-1))d=np.reshape(a,(2,3,-1))print 'b='print bprint 'c='print cprint 'd='print dresultb=[[ 1 2 3 4 5 6] [ 7 8 9 10 11 12]]c=[[[ 1
2021-05-24 12:04:40 121
原创 python矩阵相乘
python矩阵相乘1.点乘import numpy as npx = np.array([[3,4],[2,16]])b = np.linalg.inv(x)x = np.dot(x, b)print(x)result```c[[1. 0.] [0. 1.]]横乘竖2.×乘```cimport numpy as npx = np.array([[3,4],[2,16]])b = np.linalg.inv(x)x = np.multiply(x, b)p
2021-05-23 22:53:42 93
LightWeightOpenpose需求文件 lightweightopenpose必需
2021-12-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人