第九章 列联分析

列联分析用于分类数据的分析,通过列联表、χ²检验来研究变量间的关系。χ²检验统计量计算涉及观测值与期望值的比较,而列联表的相关测量包括φ相关系数、列联相关系数和V相关系数,它们衡量两个分类变量的相关程度。在应用χ²检验时需要注意期望频数的要求,以避免样本量不足导致的误判。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

列联分析主要用于分类数据的分析

1 分类数据与列联表

1 分类数据

如:完整家庭/离异家庭、一等品/二等品、三等品……

2 列联表的构造

列联表是由两个以上的变量进行交叉分类的频数分布表。

3 列联表的分布

列联表的分布可以从两个方便来看:一个是观察值的分布;一个是期望值的分布。
(1)观察值
条件频数、行边缘频数、列边缘频数、百分比
(2)期望值分布
根据比例求出的各个变量的期望值
以四个公司对改革方案的赞成/反对为例,若全部样本为420(100+120+90+110),赞成改革方案的有279,占总数的66.4%。如果各公司对改革方案的看法相同,则对一公司来说,赞成该方案的人数应当为:0.664*100=66人,期望值与观察值应非常相近。
对于 π 1 =π 2 =π 3 =π 4 =0.664(π i   为第 i  个公司赞成改革方案的百分比),可以采用 χ 2   检验。
一般情况下,任何一个单元中频数的期望值:
f e =RTn ×CTn ×n=RT×CTn  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值