处理样本不均衡现象
样本非均衡现象: 正例子数目与反例数目不相等 (相差很大)
1. 能否收集到更多的数据
2. 尝试使用其他的评价指标
error Rate: 不能用于非均衡的数据集 因此可以使用其他的评价指标
Procision:精准度计算 TP
本文探讨了处理样本不均衡现象的多种方法,包括使用不同的评价指标(如精确度、召回率、F1分数、Kappa指标和ROC曲线)、样本重抽样(欠抽样和过抽样)、人工生成样本、选择对不平衡数据友好的算法、使用惩罚模型以及创新的解决方案,如问题细分和集成方法。
样本非均衡现象: 正例子数目与反例数目不相等 (相差很大)
1. 能否收集到更多的数据
2. 尝试使用其他的评价指标
error Rate: 不能用于非均衡的数据集 因此可以使用其他的评价指标
Procision:精准度计算 TP
2358

被折叠的 条评论
为什么被折叠?