• 博客(197)
  • 收藏
  • 关注

原创 从印巴空战看数据制胜密码:元数据如何赋能数字战场

美林数据将大模型技术深度融入数据治理全链路,打造全新一代智能数据治理助手体系。致力于助力企业“自动且智能”的解决数据治理难题。

2025-05-30 15:55:24 495

原创 知识赋能业务|美林数据揭秘企业级私有知识库高效构建方法

美林数据凭借在大模型企业级场景的丰富实践经验,总结出一套企业知识库构建方法论,从知识清洗、分类对齐到智能检索,层层把关,确保知识库内容与大模型能力深度融合,真正驱动知识从“静态存储”向“业务赋能”跃迁。

2025-05-16 18:19:20 955

原创 美林数据赋能时序数据掘金:从管理困境到年创效3300万的逆袭之路

美林数据以“采存管治用”全链路方案,助力企业从海量时序数据中掘金,以数据智能驱动业务增长,领跑数字化转型新赛道!

2025-05-09 18:18:03 711

原创 「智能问数」让数据资产开口说话,重塑 BI 价值新范式

美林数据通过深度融合 DeepSeek 等前沿大模型能力,对现有Tempo商业智能平台进行智能化升级,打造新一代智能BI数据分析方案。区别于通过编码或自助式BI工具进行数据分析的模式,智能BI数据分析方案采用自然语言对话的方式,直接提问即可快速进行数据分析洞察,大幅降低企业数据分析门槛,让企业数据分析指导经营决策的周期从以“日”计量变为“分秒”级别,进而提升企业的战略决策效率和市场竞争力。

2025-05-06 09:57:59 533

原创 做了数据中台,还需要做数据治理吗?

把数据中台更多的建设成了一个数据链路的采集处理的技术平台,是大部分企业的建设现状,虽然有数据质量、数据标准、数据安全、数据目录等诸多模块,但是可能并没有实质性的实施内容。02、数据规范:提数据应用需求需要遵循提需求的规范、做数据采集需要遵循采集的规范、建仓库模型需要遵循模型设计的规范、配调度编排需要遵循编排的规范、开发可视化看板需要遵循看板取数的规范,这是可追溯、能复用的前提;01、数据标准:统一的数据标准,形成对数据的统一认识,是端到端业务流程贯通的前提,是多个业务视角打通分析报告的前提;

2025-04-30 10:37:45 311

原创 “产销存一张图”破局烟草供应链—数字化转型赋能全链路协同

通过拉通计划系统、营销系统、ERP、MES、仓储系统、原材料系统等产-销-存信息,实现了营销侧需求计划、发货需求等,与生产侧月度生产计划、月度成品量等,仓储侧原料及辅料库存信息、采购到货信息、成品发货进展信息等的同步、统一、可视,逐步做到“实物流”与“信息流”统一。产、销、存全流程涉及计划系统、营销系统、ERP、MES、仓储系统、原材料系统等之间的信息传递,存在产销计划信息不透明、调整不同步、进展反馈不及时、协同效率低等问题,导致产品交付周期动荡,管理上临时任务多等问题。邮件、OA、微信群、电话……

2025-04-18 23:03:38 319

原创 数据驱动、精准协同:高端装备制造业三位一体生产管控体系构建

此外,配合相应的管理制度落地,可以进一步保障平台的长效运行。建立偏差消除闭环手段,基于重点件号产品,通过追赶计划管理,针对自制件和采购件,定义关键的流程环节,下发车间执行跟踪,对于自制件通过与MES系统集成获取关键节点工序的报工数据,对于采购件通过人工定义关键环节进行手动报工,实现追赶计划执行过程的精细化管控,确保重点件号的计划执行,以保障最终交付。建立偏差异常识别手段,构建公司计划拖期中心,通过定义规则,对计划执行过程中发现与目标的差异及时发起提醒,可设定预警周期,对拖期进行预警,以降低拖期的风险。

2025-04-18 22:51:13 765

原创 0代码智能体工厂:Tempo Master让人人都是AI开发者

Tempo Master让大模型应用开发像搭积木一样简单。选择美林数据Tempo Master,不是选择工具,而是选择【组织AI转型的全栈解决方案】。

2025-04-11 14:53:09 796

原创 “岗位复合化、技能层次化” 高职大数据技术专业人才培养实践

在全球数字化浪潮的推动下,大数据技术已经成为引领社会进步和经济发展的核心动力。随着《关于深化现代职业教育体系建设改革的意见》等系列指导问文件的发布,我国高职大数据技术专业的教育正迎来全新机遇与挑战。这些政策不仅明确了职业教育改革的方向,也为大数据人才培养注入了新思路。在此背景下,美林数据结合自身的技术能力与多年服务数字化转型企业的实践经验,与高职院校携手探索大数据技术专业的人才培养路径。

2024-11-29 18:43:51 1458

原创 提问的艺术:如何让大模型的回答更精准?

以上介绍的是我们常用的提示词技巧。大语言模型非常善于撰写论文、文章等内容,不过如果我们仅仅简单地告诉大语言模型一些宽泛的提示,大语言模型有可能会生成枯燥、平淡、空洞的内容,这些内容往往与我们期望的结果有较大的出入。从上述例子中,我们可以看到,为了使大模型能够按照我们的期望执行任务,作为用户,我们需要不断优化我们的提示词,以构建出有效的指令,从而使大模型能够产生我们期望的输出。示例的质量和数量会直接影响回答的结果,增加示例时可选择具有代表性的示例,尽可能覆盖任务的各种角度和情境,尽量使用相似的格式和结构。

2024-11-20 17:08:39 1555

原创 数字经济新时代,高校数字经济专业人才培养如何与产业对接?

在数字经济蓬勃发展的时代背景下,人才培养是推动数字经济持续发展的核心动力。美林数据将联合高校以服务于区域数字经济产业集群发展为导向,探索面向数字化产业与产业数字化的理论型、实践型、应用型数智人才培养模式,为区域经济发展注入了新的活力。

2024-11-13 18:36:47 1784

原创 最新发布:数智人才成长引擎

美林数据快速识别人才培养困局,立足丰富产业经验优势,开发了基于知识图谱的数智人才成长引擎,点破人才供需关系,打通产教融合,帮助教育侧全面认知产业结构、岗位与职业种类、人才能力需求、及人才培养对应的必备课程和学习路径。

2024-11-06 16:34:37 938

转载 人工智能技术:二十年的飞跃与变革

对于人工智能的发展,Sora的推出标志着AI在理解和模拟真实物理世界方面的重大进步,推动了AI在视觉叙事和多媒体内容创作领域的发展,进一步拓宽了AI的应用边界。ImageNet:作为当时人工智能领域最大的数据集之一,ImageNet包含了超过1500万张图像,覆盖22000个类别,为计算机视觉系统的训练提供了丰富的资源,极大地推动了图像识别技术的发展。从早期的机器学习算法到深度学习的兴起,从单一任务的智能处理到多任务、跨领域的智能融合,人工智能在不断地突破自我,拓展着应用的边界。

2024-10-11 18:25:04 816 1

原创 “核问”智能问答系统,引领核工业数据驱动未来

在当前业务背景下,通过搭建“核问智能问答”系统,集成核电站操作、维护、安全规程等全方位的专业知识,构建高度专业化、持续学习的知识库,并深度融合大模型技术,通过智能问答的方式,打破传统信息检索的局限,实现核工业信息的智能化检索、应急响应、知识共享、决策辅助以及科普教育的全面升级。在知识问答应用中,美林数据打造了“智能寻数”助手,以直观、快捷的问答界面为桥梁,深度融合并高效整合系统内各模块的庞大数据资源,让用户能够迅速锁定并获取关键指标信息,简化数据查询及业务分析流程,提升决策分析效率。

2024-09-27 19:00:01 898

原创 大模型在企业数智化转型中可以做哪些事情?

美林数据作为国内领先的大数据人工智能企业,在工业领域深耕25年,拥有丰富的大模型应用落地经验,为客户提供量身定制的大模型应用解决方案,助力客户数智化转型成功。

2024-08-20 16:08:21 980

原创 美林数据Tempo Talents | 两大资源中心,打造开放、成长型数智人才能力平台

面对课程资源与数据资源分散碎片化的挑战,美林数据提出了Tempo Talents——数智人才应用能力解决方案。面向高校教学与科研应用场景,打造课程资源与数据资源两大资源中心,以更好地实现校内教学资源、数据资源的有序管理、持续积累和共享应用,助力高校教学与科研全面提升。

2024-08-01 10:51:56 994

原创 数据治理之“财务一张表”

前言信息技术的发展,伴随企业业务系统的纷纷建设,提升业务处理效率的同时,也将企业的整体主价值链流程分成了一段一段的业务子流程,很多情况下存在数据上报延迟、业务协作不顺畅、计划反馈不及时、库存积压占资多……都可以从数据入手去解决。

2024-07-25 16:48:29 1171

原创 RAG vs 微调:大模型知识的进化之路

RAG技术,是一种基于检索增强的生成技术。它通过从大型外部数据库中检索与输入问题相关的信息,来辅助大模型回答问题。简单来说,RAG技术就像是一个拥有海量知识的“智能助手”,在回答用户问题时,将实时检索的相关知识提供给大模型,使大模型问答应用回答的更加准确、全面。微调技术,利用预训练模型的权重和特征,通过在新任务数据集上的训练,对模型进行适应性和优化调整。这一技术的核心目的是使模型能够适应新的、具体的任务或领域,而无需从头开始训练一个全新的模型。RAG和微调的本质差异在于是否对既有大模型进行改变。

2024-07-25 16:33:10 959

原创 数据变现狂潮!细数数据资产入表如何助力企业“一夜暴富”?

2019年起,我国首次将数据要素市场化配置上升为国家战略,随后,国家持续完善数据要素市场的建设蓝图,并配套出台了一系列政策意见,为数据流通、交易提供了坚实的制度保障。其中,《企业数据资源相关处理暂行规定》的发行,为企业如何合规、高效地管理与利用数据资源指明了方向,而“数据入表”这一创新实践,更是为企业解锁了数据资产价值的新领域,激发了企业深入挖掘数据价值、优化资源配置的无限潜能。

2024-07-22 17:52:03 558

原创 什么是大模型?

大模型是指具有数千万甚至数亿参数的深度学习模型。近年来,随着计算机技术和大数据的快速发展,深度学习在各个领域取得了显著的成果,如自然语言处理,图片生成,工业数字化等。为了提高模型的性能,研究者们不断尝试增加模型的参数数量,从而诞生了大模型这一概念。大模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型采用预训练+微调的训练模式,在大规模数据上进行训练后,能快速适应一系列下游任务的模型。

2024-07-12 17:41:00 1685

原创 一个使用率超高的大数据实验室是如何练成的?

厦门大学嘉庚学院如何打造高效运转的大数据实验室,实现理实一体实验教学,支撑高校“四新”人才培养工作?

2024-07-05 16:26:52 898

原创 Tempo Talents | 创新专业建设方案,赋能高校4+N大数据学科人才培养

数字经济高速发展的当下,美林数据将始终以深化产教融合为核心,依托“全国工业大数据行业产教融合共同体”的协同平台,在数字化时代,构建以产业发展为导向的人才培养新模式,教育体系与企业需求紧密结合,共同推动教育改革与创新,以迎接未来社会挑战。

2024-03-20 10:22:44 1086

原创 正式通知:你的PPT自己会演讲啦

大模型遍地开花的今天,纯技术科普铺天盖地,不可否认这是一个技术可以爆改未来的时代。但除了技术控,大部分人更在意的是高科技带来的结果,于大众,卷技术的高下,不如论技术的实用性:

2024-03-15 16:14:25 574

原创 璀璨2023,共赴2024——Tempo大数据分析产品年度回顾

随着2024年的到来,2023年已落下了帷幕,这一年里,Tempo大数据分析产品不断追求创新,进行了四次重要的版本升级。为用户带来新功能的同时确保用户在使用产品时获得卓越的体验感,从而更大程度地提升用户的工作效率。现在,让我们一起回顾Tempo大数据分析产品在2023年的成长历程,看看它都为我们带来了哪些惊喜与突破。

2024-01-17 18:13:54 1018

原创 人工智能在大型复杂机械产品装配状态检测自动化中的应用

针对当前大型复杂机械结构装配状态检测过程中存在的问题,我们研究了综合人工智能、数字图像处理、机器人控制、装配机理等跨学科领域知识,给出了一种大型复杂机械产品的装配状态检测自动化,并验证了此方法的合理性和可行性。上述研究对解决产品装配安装状态监测模式创新、通过加强过程控制从而提高产品装配的精确度和完成度有重要的技术价值和实际意义。

2023-12-14 10:45:31 1882

原创 实践分享 | 数据中台高效交付的秘笈

美林数据在数据中台项目中体系化的方法论在每个环节都提供了完备的建设思路、实施步骤、工作要点、成果模板、经典案例等内容,核心以业务为导向,提供场景化建设思路,并高度重视对企业赋能“授人以鱼不如授人以渔”的理念,无论从成果的价值可持续性、还是市场竞争力上看,美林中台建设方法论都具有全面性、实用性、前瞻性!

2023-12-13 18:05:38 1056

原创 数据挖掘分析过程中,常见的数据处理方法有哪些?

进行数据挖掘分析的时候,数据处理是非常重要的一环。数据处理一般是要结合实际业务做相应的数据处理,为后续机器学习建模做好准备。比如数据存在缺失值,就要做相应的缺失值的填充或删除操作;数据建模需要的数据存储在不同的表或源中,需要做相应的融合操作;拿到的数据是明细数据,但实际建模需要的是聚合数据等等。

2023-12-12 18:51:42 552

原创 新工科:数据科学与大数据技术实验中心解决方案,赋能高校新工科数智人才培养

基于美林数据丰富的产业资源优势,平台内置丰富的产业数据与课程资源,为高校学生教学、实训与创新科研提供基础资源支撑。美林数据根据高层次数字人才培养内在逻辑和产业用人特质,以校企协同为基础,面向北京师范大学数据科学与大数据专业、人工智能培训班建设大数据综合实训教学体系,助力北京师范大学打造产、学、研、工一体化的校企深度合作模式,建设区域级的产教融合示范性平台,打造具备品牌优势与特色的国内一流专业,促进学校人才培养体系创新,为学校重点培养具备从事与大数据相关的科研、教学、研发、应用的高层次复合型人才提供支撑。

2023-12-11 18:36:07 1194

原创 驾驭数据与人工智能是人才培养的时代命题

美林数据出席第五届中国IT教育博鳌论坛,与计算机教育工作者一起探索AI时代人才培养的新模式

2023-11-14 19:42:08 252

原创 使用数据分析,识别设备异常

设备健康监测系统在工业领域中扮演着至关重要的角色,它能够帮助企业及时发现设备异常,预防故障,提高设备使用寿命和生产效率。而异常诊断技术则是设备健康监测系统中的核心部分,能够实现对设备异常情况的准确判断。根据设备状态数据判断设备是否出现异常情况的方法。在设备健康监测系统中,异常诊断技术的作用主要体现在及时发现设备异常、提高设备使用寿命、提高生产效率等方面。

2023-11-08 10:34:29 1501

原创 TempoEM指标平台重磅发布,让管理更敏捷,业务更智能!

TempoEM指标平台—让管理更敏捷,业务更智能!全方位解决企业指标管理中的难点痛点,帮助企业构建口径统一、自上而下、业务驱动的指标体系,有效衡量业务经营和发展情况。

2023-10-11 14:44:59 256

原创 利用大模型&知识图谱技术,告别繁重文案,实现非结构化数据高效管理

利用大模型&知识图谱技术,告别繁重文案,实现非结构化数据高效管理。搜索、问答、编稿、优化无所不能,拒绝知识应用焦虑,让你的文案工作轻松起来

2023-09-21 19:10:11 463

原创 智能采煤解决方案,聚焦核心环节,助力高效运营和安全生产!

以智能化、自动化、数字化的方式,实现采煤机自监控与滚筒高度预测、供液/电液控/运输等运行状况自监控,解决目前矿山采煤环节存在的问题,规范操作流程、提升采煤效率、提高生产安全性,为矿山行业带来巨大的价值。政府对智能矿山的要求和推动,以及市场对高效、安全、环保矿山生产的需求,使得智能采煤趋势越来越受关注。通过自动化和智能化的技术,可以实时监测和控制采煤过程,提前发现和解决潜在的安全隐患,降低事故风险。和智能算法,实现更高效的采煤操作,提高煤炭的产量,让采煤过程更加高效和精确。一、智能采煤发展历程。

2023-08-18 17:22:31 326

原创 智能排水解决方案,设备实时监控+预测分析,真正实现“无人值守”!

智能采煤解决方案通过智能化算法的应用,全方位可视化展示设备健康性能及故障的预测预警,辅助矿区在地下、地表排水时,能够全方位掌握排水设备的运行态势和异常信息,从而合理安排设备的运维保养和启停计划,保障矿区在排水方面安全、平稳、有序的进行生产,为企业安全生产、节能减排进行数据化支撑。

2023-08-18 16:50:52 383

原创 基于人工智能的智能矿山解决方案

的转型趋势,美林数据根据多年的行业积累,充分结合目前矿山在生产、安全、运输和经营方面的业务需求,以智能煤矿建设过程中产生的多源异构数据为底座,进行数据的融合、开发、管理、服务和应用,实现煤矿在开拓、采掘、运输、通风、安全保障、设备维护、经营管理等安全生产管理过程的智能化运行,让生产更高效、让决策更智慧、让运行更安全。利用大数据、人工智能等先进技术和智能模型,分析、评估、定向各类设备的运行状态、运行趋势、故障根因,提前对设备进行针对性保养、维修,降低运维成本,保障设备运行和人工作业的安全性。

2023-08-04 18:03:14 494

原创 业务不打烊:解决软件系统升级痛点的新方法

应用服务无感知升级解决方案”可应用于大规模分布式应用服务的持续性升级、企业级应用的无缝升级、在线服务的无中断更新等场景。不仅可以满足用户对零中断的期望,提升用户体验,还可以保证系统的可靠性,减少升级过程中对业务的影响,从而促进企业的发展。

2023-07-26 14:39:30 470

原创 揭秘数据探查:引领企业数据治理质量提升,助力业务高速发展!

通过数据探查,可以为企业提供了对数据的直观认识,减少对主观假设的依赖,使数据分析和决策更加可靠和可信,及早防控风险,并有效利用数据资源,为业务决策、产品优化和创新提供有力的支持。

2023-07-21 15:11:49 678

原创 数据标准化助力生产企业产能提升

毫无疑问,多产线、多工厂的协同管理成为集团构建核心竞争力的关键因素。企业内部供应链、研制链的业务贯通与协作需要基于统一的数据标准、统一的集成规范开展,数据标准化将成为企业数字化转型的有效赋能手段。

2023-07-19 10:18:59 401

原创 功能升级,数据同步更便捷!场景化数据同步助您提效60%!

在企业数仓建设初期,为了保障数字化转型的落地效果,需要提供充足的数据资源,除了基础的数据抽取、转换和加载等过程,数据的同步也是重要环节之一。以T企业为例,由于企业内部数据存量较大,每次全量读取数据都需要很长时间才能完成迁移工作,于是T企业采用增量的方式,按照一定的调度频率读取周期内的新增数据,迁移到数据仓库中。T企业内部有一定的历史存量数据,每天也会产生新的数据,建设数仓时采用一次全量周期增量的模式,先把历史存量数据全部抽取到目标端,之后每次都只取增量数据。根据不同的业务需求,

2023-07-15 12:01:08 535

原创 ChatGPT对高校人才培养模式的挑战与应对策略思考

酷吗?输入指令后直接就能生成一大串代码,即使不懂相关技术也能玩转编程,这就是ChatGPT赋予你的“新能力”,除了写代码,ChatGPT还能帮你执行各种五花八门的任务。AI工具如ChatGPT在行业中的广泛应用对于行业的人才结构和能力要求产生了深远影响。许多在职人员开始担心自己未来可能被AI取代,而初级岗位的人员替代趋势也日益明显。与此同时,一些教师也开始担忧初级岗位需求的减少是否会给高校应届毕业生的就业带来更大的压力。

2023-07-12 19:12:47 1538 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除