任务
用你目前评分最高的模型作为基准模型,和其他模型进行stacking融合,得到最终模型及评分。
实现
#简单调包实现
from mlxtend.classifier import StackingCVClassifier, StackingClassifier
clf_stacking = StackingClassifier(classifiers=[svm,dtc,xgbc,lgbc],meta_classifier=lr,use_probas=True,verbose=3)
clf_stacking.fit(X_std_train,y_train)
使用之前模型评估的函数对融合后的模型评分
model_metrics(clf_stacking,X_std_train,X_std_test,y_train,y_test)
从测试集的f1 score来看,相比于单模型评分提高了6%,但是分数也不高,只有0.5439.
参考