客户贷款逾期预测[7] - 模型融合

任务


        用你目前评分最高的模型作为基准模型,和其他模型进行stacking融合,得到最终模型及评分。
 

实现

#简单调包实现
from mlxtend.classifier import StackingCVClassifier, StackingClassifier
clf_stacking = StackingClassifier(classifiers=[svm,dtc,xgbc,lgbc],meta_classifier=lr,use_probas=True,verbose=3)
clf_stacking.fit(X_std_train,y_train)

       使用之前模型评估的函数对融合后的模型评分

model_metrics(clf_stacking,X_std_train,X_std_test,y_train,y_test)

       从测试集的f1 score来看,相比于单模型评分提高了6%,但是分数也不高,只有0.5439.

参考

      stacking原理及python实现

      集成学习中的stacking及python实现

      

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值