给定一个完全由小写英文字母组成的字符串等差递增序列,该序列中的每个字符串的长度固定为 L,从 L 个 a 开始,以 1 为步长递增。例如当 L 为 3 时,序列为 { aaa, aab, aac, ..., aaz, aba, abb, ..., abz, ..., zzz }。这个序列的倒数第27个字符串就是 zyz。对于任意给定的 L,本题要求你给出对应序列倒数第 N 个字符串。
输入格式:
输入在一行中给出两个正整数 L(2 ≤ L ≤ 6)和 N(≤105)。
输出格式:
在一行中输出对应序列倒数第 N 个字符串。题目保证这个字符串是存在的。
输入样例:
3 7417
输出样例:
pat
又是这种26进制的恶心题目,这类题目很考验人的思维,这次是倒着给出第几个序列串,跟以前的方法一样,我是先弄成从一开始的序列数,然后再转化为26进制。看看代码操作:
#include<iostream>
using namespace std;
const int maxn=1005;
typedef long long ll;
#include<bits/stdc++.h>
int a[maxn];
int main()
{
int i,j;
int n;
ll num;
cin>>n>>num;
ll sum=0;
int c=n;
while(c--)
{
sum=sum*26+26;
}
sum-=num;
sum++;
j=0;
while(sum>0)
{
if(sum%26==0)
{
a[j++]=26;
sum--;
}
else
{
a[j++]=sum%26;
}
sum/=26;
}
j--;
for(;j>=0;j--)
{
printf("%c",a[j]-1+'a');
}
return 0;
}
思路就是这样,一步一步的往回作除法运算,保存在数组中,最后在倒序输出转化为字符。