python浮点数计算出现无限小数

浮点数精度误差源于计算机内部以二进制保存十进制数,导致有限位小数转为无限循环二进制,且保存精度有限。例如,0.9在float中变为0.89999998,在double中为0.90000000000000002。这解释了为何0.1乘以某些整数时会出现额外的小数位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

浮点数精度问题不是与编程语言种类关系不大,与进制转换有关


 

for i in range(20):
    print(0.1,'*',i, '=',0.1*i)
0.1 * 0 = 0.0
0.1 * 1 = 0.1
0.1 * 2 = 0.2
0.1 * 3 = 0.30000000000000004
0.1 * 4 = 0.4
0.1 * 5 = 0.5
0.1 * 6 = 0.6000000000000001
0.1 * 7 = 0.7000000000000001
0.1 * 8 = 0.8
0.1 * 9 = 0.9
0.1 * 10 = 1.0
0.1 * 11 = 1.1
0.1 * 12 = 1.2000000000000002
0.1 * 13 = 1.3
0.1 * 14 = 1.4000000000000001
0.1 * 15 = 1.5
0.1 * 16 = 1.6
0.1 * 17 = 1.7000000000000002
0.1 * 18 = 1.8
0.1 * 19 = 1.9000000000000001
程序运行结束

 

浮点数的误差是怎么形成的

浮点数的误差bai的产生一般由于两个du原因
1)由于计算zhi机内部以dao二进制保存,zhuan所以十进制的有限位的小数shu,在计算机内部会是一个无限位的小数。
例如 十进制的0.9虽然只有一位小数,转成2进制是无限循环小数0.1110011001100110011...
2)计算机保存浮点数的精度有限,例如float可以保留十进制最多7位(二进制23位)有效数字,double 可以保留十进制15~16位(二进制52位)有效数字。那有效数字以后的就被忽略了。
例如上面的0.9的表示受精度所限,精度以后的就被忽略了,这样
float时,它是0.89999998
double时,它是0.90000000000000002

参考:https://zhidao.baidu.com/question/936087062967550252.html

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值