求从1-n中选k个数,使得这k个数的乘积不含完全平方因子
70%
n≤30
100%
n≤500
70%:
状压dp,
f[i][j][k]
表示前i个数,选了j个,当前所选数之积分解质因数后的状态为k(k表示成二进制后,第一位表示有没有2,第二位表示有没有3……以此类推)令i+1分解质因数后状态为
pos[i+1]
f[i][j][k]→f[i+1][j+1][k|pos[i+1]](k&pos[i+1]=0)
f[i][j][k]→f[i+1][j][k]
#include<bits/stdc++.h>
#define MOD 1000000007
using namespace std;
inline int getint(){
int x=0,p=1;
char c=getchar();
while(!isdigit(c)){
if(c=='-')p=-1;
c=getchar();
}
while(isdigit(c)){
x=(x<<3)+(x<<1)+(c^'0');
c=getchar();
}
return x*p;
}
int primes[505],tot;
bool pd[505];
inline void pre(){
pd[1]=1;
for(int i=2;i<=500;++i){
if(!pd[i]){
primes[++tot]=i;
}
for(int j=1;j<=tot&&i*primes[j]<=500;++j){
pd[i*primes[j]]=1;
if(i%primes[j]==0)break;
}
}
}
inline void putint(long long x){
if(x<0){
x=-x;
putchar('-');
}
static long long buf[22];
long long tot=0;
do{
buf[tot++]=x%10;
x/=10;
}while(x);
while(tot)putchar(buf[--tot]+'0');
}
long long f[35][13][2050];
long long sum[35][13];
inline void predp(){
f[0][0][0]=1;
for(int i=0;i<=29;++i){
int x=0;
bool flag=0;
for(int j=1;j<=10;++j){
if((i+1)%primes[j]==0){
x^=1<<(j-1);
int t=(i+1)/primes[j];
if(t%primes[j]==0){
flag=1;
break;
}
}
}
//cout<<i+1<<" "<<x<<endl;
for(int j=0;j<=11;++j){
for(int k=0;k<1024;++k){
f[i+1][j][k]+=f[i][j][k];
f[i+1][j][k]%=MOD;
if((k&x)==0&&(!flag))(f[i+1][j+1][k|x]+=f[i][j][k])%=MOD;
}
}
}
// for(int i=1;i<=6;++i){
// for(int j=1;j<=i;++j){
// for(int k=0;k<8;++k){
// cout<<i<<" "<<j<<" "<<k<<" "<<f[i][j][k]<<endl;
// }
// }
// }
for(int i=0;i<=30;++i){
for(int j=0;j<=11;++j){
sum[i][j]=0;
for(int k=0;k<=1024;++k){
sum[i][j]+=f[i][j][k];
sum[i][j]%=MOD;
}
}
}
}
inline void work1(int n,int k){
if(k>12)k=12;
long long ans=0;
for(int i=1;i<=k;++i){
ans+=sum[n][i];
ans%=MOD;
}
cout<<ans<<endl;
}
inline void work(int n,int k){
if(n<=30)work1(n,k);
else putint(rand()),putchar('\n');
}
int main(){
pre();
predp();
int t=getint();
while(t--){
int n=getint(),k=getint();
work(n,k);
}
return 0;
}
(考场代码,求轻喷)
100%
先来做一道小学题:
证明当n=500时至多取96个数使它们满足题意
取500中所有质数及1,共96个数,满足题意
下证97及以上不可能
构造抽屉:
{1}
{2,4,6,8,10,
⋯
,500}
{3,6,9,12,
⋯
,498}
{5,10,15,
⋯
,500}
⋮
{491}
{499}
共96个
当
k≥97
时一个抽屉里至少有两个数
明显当一个抽屉中有至少两个数被选后,乘积一定包含完全平方因子
故
kmax
=96
(说了那么多废话,就是想吐槽
n=500,k≥400
的数据是要闹哪样)
好了,抽屉摆在这里,明显,每个抽屉里只能选一个数
那么答案就是
∏
集合大小(了吗)
naive
有些数(比如6)出现在了不止一个集合中,这样计算肯定是错的
那就让一个数只在一个集合里
……
……
……
(woc,做不到啊)
一个显然的性质:一个数x至多含有一个质因数大于
x√
好 重新分组
{23,46,69,
⋯
,483}
{29,58,87,
⋯
,493}
⋮
{491}
{499}
这样就可以(了吗
×
2)
还有些数没有呢!
其余数全部一个数一个桶
这样每个桶选一个后,大于
n√
的质因数至多只有一个
只用考虑小于的
用70%的dp
然后MLE了
用滚动数组,或直接参照0-1背包的状态优化
详见代码
#include<bits/stdc++.h>
#define FE "mul"
#define MOD 1000000007
using namespace std;
inline int getint(){
int x=0,p=1;
char c=getchar();
while(!isdigit(c)){
if(c=='-')p=-1;
c=getchar();
}
while(isdigit(c)){
x=(x<<3)+(x<<1)+(c^'0');
c=getchar();
}
return x*p;
}
int primes[505],tot;
bool pd[505];
inline void pre(){
pd[1]=1;
for(int i=2;i<=500;++i){
if(!pd[i]){
primes[++tot]=i;
}
for(int j=1;j<=tot&&i*primes[j]<=500;++j){
pd[i*primes[j]]=1;
if(i%primes[j]==0)break;
}
}
}
inline void putint(long long x){
if(x<0){
x=-x;
putchar('-');
}
static long long buf[22];
long long tot=0;
do{
buf[tot++]=x%10;
x/=10;
}while(x);
while(tot)putchar(buf[--tot]+'0');
}
int dp[100][260];
vector<int>bucket[505];
int pos[505];
inline void add(int &a,int b){
a+=b;
a>=MOD?a-=MOD:0;
}
inline void work2(int n,int k){
if(k>98)k=98;
int fi=1;
for(int i=1;i<=n;++i){
bucket[i].clear();
pos[i]=0;
}
while(primes[fi]<sqrt(n)){
++fi;
}
for(int i=1;i<=n;++i){
int temp=i;
for(int j=1;j<fi;++j){
int v=primes[j];
if(temp%(v*v)==0){
pos[i]=-1;
break;
}
if(temp%v==0){
pos[i]^=(1<<(j-1));
temp/=v;
}
}
if(~pos[i]){
if(temp!=1){
bucket[temp].push_back(i);
}
else{
bucket[i].push_back(i);
}
}
}
memset(dp,0,sizeof(dp));
dp[0][0]=1;
for(int i=1;i<=n;++i){
if(bucket[i].size()){
int sz=bucket[i].size();
for(int j=k;j>=0;--j){
for(int l=0;l<sz;++l){
for(int m=pos[bucket[i][l]],p=255^m; ;p=((p-1)&(255^m))){
add(dp[j+1][p|m], dp[j][p]);
if(p==0)break;
}
}
}
}
}
int ans=0;
for(int i=1;i<=k;++i){
for(int j=0;j<256;++j){
add(ans,dp[i][j]);
}
}
putint(ans),putchar('\n');
}
inline void work(int n,int k){
work2(n,k);
}
int main(){
pre();
int t=getint();
while(t--){
int n=getint(),k=getint();
work(n,k);
}
return 0;
}