NOIP模拟(20171024)T2 乘积

求从1-n中选k个数,使得这k个数的乘积不含完全平方因子
70%       n30
100%     n500

70%:

状压dp, f[i][j][k] 表示前i个数,选了j个,当前所选数之积分解质因数后的状态为k(k表示成二进制后,第一位表示有没有2,第二位表示有没有3……以此类推)令i+1分解质因数后状态为 pos[i+1]
f[i][j][k]f[i+1][j+1][k|pos[i+1]](k&pos[i+1]=0)
f[i][j][k]f[i+1][j][k]

#include<bits/stdc++.h>
#define MOD 1000000007
using namespace std;
inline int getint(){
    int x=0,p=1;
    char c=getchar();
    while(!isdigit(c)){
        if(c=='-')p=-1;
        c=getchar();
    }
    while(isdigit(c)){
        x=(x<<3)+(x<<1)+(c^'0');
        c=getchar();
    }
    return x*p;
}
int primes[505],tot;
bool pd[505];
inline void pre(){
    pd[1]=1;
    for(int i=2;i<=500;++i){
        if(!pd[i]){
            primes[++tot]=i;
        }
        for(int j=1;j<=tot&&i*primes[j]<=500;++j){
            pd[i*primes[j]]=1;
            if(i%primes[j]==0)break;
        }
    }
}
inline void putint(long long x){
    if(x<0){
        x=-x;
        putchar('-');
    }
    static long long buf[22];
    long long tot=0;
    do{
        buf[tot++]=x%10;
        x/=10;
    }while(x);
    while(tot)putchar(buf[--tot]+'0');
}
long long f[35][13][2050];
long long sum[35][13];
inline void predp(){
    f[0][0][0]=1;
    for(int i=0;i<=29;++i){
        int x=0;
        bool flag=0;
        for(int j=1;j<=10;++j){
            if((i+1)%primes[j]==0){
                x^=1<<(j-1);
                int t=(i+1)/primes[j];
                if(t%primes[j]==0){
                    flag=1;
                    break;
                }
            }
        }
        //cout<<i+1<<" "<<x<<endl;
        for(int j=0;j<=11;++j){
            for(int k=0;k<1024;++k){
                f[i+1][j][k]+=f[i][j][k];
                f[i+1][j][k]%=MOD;
                if((k&x)==0&&(!flag))(f[i+1][j+1][k|x]+=f[i][j][k])%=MOD;
            }
        }
    }
//  for(int i=1;i<=6;++i){
//      for(int j=1;j<=i;++j){
//          for(int k=0;k<8;++k){
//              cout<<i<<" "<<j<<" "<<k<<" "<<f[i][j][k]<<endl;
//          }
//      }
//  }
    for(int i=0;i<=30;++i){
        for(int j=0;j<=11;++j){
            sum[i][j]=0;
            for(int k=0;k<=1024;++k){
                sum[i][j]+=f[i][j][k];
                sum[i][j]%=MOD;
            }
        }
    }
}
inline void work1(int n,int k){
    if(k>12)k=12;
    long long ans=0;
    for(int i=1;i<=k;++i){
        ans+=sum[n][i];
        ans%=MOD;
    }
    cout<<ans<<endl;
}
inline void work(int n,int k){
    if(n<=30)work1(n,k);
    else putint(rand()),putchar('\n');
}
int main(){
    pre();
    predp();
    int t=getint();
    while(t--){
        int n=getint(),k=getint();
        work(n,k);
    }
    return 0;
}

(考场代码,求轻喷)

100%

先来做一道小学题:
证明当n=500时至多取96个数使它们满足题意
取500中所有质数及1,共96个数,满足题意
下证97及以上不可能
构造抽屉:
{1}
{2,4,6,8,10, ,500}
{3,6,9,12, ,498}
{5,10,15, ,500}

{491}
{499}
共96个
k97 时一个抽屉里至少有两个数
明显当一个抽屉中有至少两个数被选后,乘积一定包含完全平方因子
kmax =96
(说了那么多废话,就是想吐槽 n=500,k400 的数据是要闹哪样)
好了,抽屉摆在这里,明显,每个抽屉里只能选一个数
那么答案就是 集合大小(了吗)
naive
有些数(比如6)出现在了不止一个集合中,这样计算肯定是错的
那就让一个数只在一个集合里
……
……
……
(woc,做不到啊)
一个显然的性质:一个数x至多含有一个质因数大于 x
好 重新分组
{23,46,69, ,483}
{29,58,87, ,493}

{491}
{499}
这样就可以(了吗 × 2)
还有些数没有呢!
其余数全部一个数一个桶
这样每个桶选一个后,大于 n 的质因数至多只有一个
只用考虑小于的
用70%的dp
然后MLE了
用滚动数组,或直接参照0-1背包的状态优化
详见代码

#include<bits/stdc++.h>
#define FE "mul"
#define MOD 1000000007
using namespace std;
inline int getint(){
    int x=0,p=1;
    char c=getchar();
    while(!isdigit(c)){
        if(c=='-')p=-1;
        c=getchar();
    }
    while(isdigit(c)){
        x=(x<<3)+(x<<1)+(c^'0');
        c=getchar();
    }
    return x*p;
}
int primes[505],tot;
bool pd[505];
inline void pre(){
    pd[1]=1;
    for(int i=2;i<=500;++i){
        if(!pd[i]){
            primes[++tot]=i;
        }
        for(int j=1;j<=tot&&i*primes[j]<=500;++j){
            pd[i*primes[j]]=1;
            if(i%primes[j]==0)break;
        }
    }
}
inline void putint(long long x){
    if(x<0){
        x=-x;
        putchar('-');
    }
    static long long buf[22];
    long long tot=0;
    do{
        buf[tot++]=x%10;
        x/=10;
    }while(x);
    while(tot)putchar(buf[--tot]+'0');
}
int dp[100][260];
vector<int>bucket[505];
int pos[505];
inline void add(int &a,int b){
    a+=b;
    a>=MOD?a-=MOD:0;
}
inline void work2(int n,int k){
    if(k>98)k=98;
    int fi=1;
    for(int i=1;i<=n;++i){
        bucket[i].clear();
        pos[i]=0;
    }
    while(primes[fi]<sqrt(n)){
        ++fi;
    }
    for(int i=1;i<=n;++i){
        int temp=i;
        for(int j=1;j<fi;++j){
            int v=primes[j];
            if(temp%(v*v)==0){
                pos[i]=-1;
                break;
            }
            if(temp%v==0){
                pos[i]^=(1<<(j-1));
                temp/=v;
            }
        }
        if(~pos[i]){
            if(temp!=1){
                bucket[temp].push_back(i);
            }
            else{
                bucket[i].push_back(i);
            }
        }
    }
    memset(dp,0,sizeof(dp));
    dp[0][0]=1;
    for(int i=1;i<=n;++i){
        if(bucket[i].size()){
            int sz=bucket[i].size();
            for(int j=k;j>=0;--j){
                for(int l=0;l<sz;++l){
                    for(int m=pos[bucket[i][l]],p=255^m; ;p=((p-1)&(255^m))){
                        add(dp[j+1][p|m], dp[j][p]);
                        if(p==0)break;
                    }
                }
            }
        }
    }
    int ans=0;
    for(int i=1;i<=k;++i){
        for(int j=0;j<256;++j){
            add(ans,dp[i][j]);
        }
    }
    putint(ans),putchar('\n');
}
inline void work(int n,int k){
    work2(n,k);
}
int main(){
    pre();
    int t=getint();
    while(t--){
        int n=getint(),k=getint();
        work(n,k);
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值