- 博客(12)
- 问答 (2)
- 收藏
- 关注
原创 笔记:Conda虚拟环境创建及环境备份与还原
本文记录了使用conda操作虚拟环境的内容,包括环境的查看、创建、备份、恢复,最后补充了一点pip和conda设置镜像的方法,欢迎大家交流学习。
2025-01-17 11:25:18
671
原创 Cartopy绘制地图
之前有想过用Basemap绘制地图,后来在查阅Basemap的说明文件的时候发现Basemap已经停止维护了,神特么停止维护,这该死可爱的不向下兼容的版本切换啊,为啥这么说呢,因为Basemap是基于py2开发的,所以推荐使用Cartopy,经过长达2天,合计7W+秒的钻研之后,终于完成了我自己需要的部分的代码的构建。你没有看错,就是基于我自己的需求进行的代码编写,毕竟我只是做个笔记便于后面使用方便查找 话不多说,上代码。# -*- coding:utf-8 -*-"""@ Tsinlu Lee
2021-12-02 22:18:43
1852
原创 《Python编程 从入门到实践》 项目二:数据可视化
《Python编程 从入门到实践放弃》 项目二:数据可视化推荐的数据可视化包Matplotlib、Seaborn、Altair、Basemap、Cartopy、ggplot本文着重讲Matplotlib, 其他包可以去官网查看原始文档ggplot和R语言的ggplot2风格类似,感兴趣的可以自行查阅文档 Matplotlib 可能是 Python 2D-绘图领域使用最广泛的套件。它能让使用者很轻松地将数据图形化,可以轻松实现图表、直方图、功率谱、条形图、误差图、散点图等的绘制,同时提供多样化的输
2021-11-06 14:52:39
667
原创 Python 最最基础的知识
Python简介Why Python? Python是一种效率极高的语言 Python的语法也有助于创建整洁的代码, 这也意味着使用Python编写的代码更容易阅读、调试和扩展 对于初学者和完成普通任务,Python语言是非常简单易用的 提供了非常完善的基础代码库,覆盖了网络、文件、GUI、数据库、文本等大量内容,被形象地称作“内置电池(batteries included)” Python有大量的第三方开发包,可以满足绝大多数的应用需求 Python的哲学就是简单优雅,尽量写容易看明白的
2021-11-01 19:20:17
497
原创 python 3.7.9 安装Geopandas
之前有用过GDAL包进行空间数据的分析,但最近想通过对shp文件进行操作以实现数据的可视化,但遇到了问题,也查过很多资料,包括安装Anaconda和第三方包的尝试,但问题一直没有解决。连着三天对python是安装卸载的,直到今天早上,把gdal的扩展包仔细看了下,发现有一个很大的坑,如图。 仔细看了下,这里python 3.7的版本的GDAL有两个,之前我一直下的是第一个,结果每次一安装Fiona时都报错说需要3.2.1的GDAL,没有吧,后来发现,有个gdal 3.2.1的扩展包,但需要额外的配置
2021-06-23 13:28:12
666
原创 MarkDown一些有用的小技巧
Markdown test# 一级标题一级标题## 二级标题二级标题### 三级标题三级标题以此类推,直到六级标题。字体加粗**文字** 这是正常文字这是粗体斜体*文字* 这是正常文字这是斜体斜体加粗***文字*** 这是正常文字 这是斜体加粗加删除线~~文字~~ 这是要加删除线的文字字体高亮字体高亮更改字体、字号、颜色、加粗<font face = 黑体 size = 8>黑体文字</font>黑体文字<font size =
2021-04-12 21:02:44
216
原创 Python + GDAL处理数据(3):提取栅格数据到点和栅格重采样
在进行Meta-Analysis时,经常需要整合文献报道的数据,但大多数时候我们是无法完全获取到这些信息的,比如在研究降水对生态系统生产力的影响时,可能就很少会报道土壤氢离子浓度指数(pH) 或者土壤容重(BD) 等信息,这时我们可能会需要从一些可信赖的数据源去获取这些信息。一般来说,最优的数据获取方式是直接联系论文的作者,但有时候这并不是最有效的方式;其次就是通过其他相同位点的研究报道来获取,但很多时候,相同位点进行研究报道的情况可能是一致的,也就是说,同样都是研究降雨的影响的话,可能都会忽略对土壤属
2021-04-12 20:57:21
3581
4
原创 Python + GDAL处理数据(2): 数据转存为栅格
接上篇Python + GDAL 处理数据(1): NC文件的读取老规矩,一上来先声明注释和导入包# -*- coding:utf-8 -*-from osgeo import gdal,osr,ogr,gdalconstimport os,datetime,randomYear = 2015locals()["Pr"+str(Year)] = PrRCP85.variables['pr'][1,:,:] #这里是为了批量生成变量名,就不改了locals()["Pr"+str(Year)]
2021-03-13 10:36:39
1004
原创 python+GDAL 处理数据(1): NC文件的读取
最近的工作和空间数据有关,把最近的内容进行下汇总,方便下次查找内容方便。 首先我们进行声明注释和导入预设的包。import pandas as pdimport netCDF4 as nc import datetime,osimport numpy as npfrom osgeo import gdal,osr,ogr,gdalconstfrom gdalconst import *import os,datetime,random,sysimport matplotlib.pypl.
2021-02-04 11:40:04
2883
1
空空如也
altair可视化怎么将图片输出
2019-05-24
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅