Python中的MapReduce以及在Hadoop环境下运行

本文介绍了程序分别在Linux和Hadoop环境中的运行步骤。在Linux中,需新建目录和文件,编写内容并添加执行权限后运行;在Hadoop环境中,要新建run.sh文件,配置相关信息,添加权限,上传文件,运行脚本并查看保存结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

零、码仙励志

一、在Linux中运行

二、在Hadoop环境中运行


零、码仙励志

年轻人不要老想着天上会掉馅饼,要脚踏实地,也许地上会捡到钱呢?

一、在Linux中运行

首先在Linux中新建下面的目录,里面什么也不要放,然后进入到目录

/home/hadoopuser/mydoc/py

然后在里面创建一个ddd.txt文件

里面编写下面内容

aaa
bbb
aaa
bbb
ddd
ccc
ddd

接着新建mapper.py文件

里面编写下面内容

#!/usr/bin/env python
# encoding=utf-8
import sys
for line in sys.stdin:
    line = line.strip()
    words = line.split()
    for word in words:
        print("%s\t%s" % (word, 1))

接着新建reduce.py文件

里面编写下面内容

#!/usr/bin/env python
# encoding=utf-8
from operator import itemgetter
import sys

current_word = None
current_count = 0
word = None

for line in sys.stdin:
    line = line.strip()
    word, count = line.split('\t', 1)
    try:
        count = int(count)
    except ValueError:  #count如果不是数字的话,直接忽略掉
        continue
    if current_word == word:
        current_count += count
    else:
        if current_word:
            print("%s\t%s" % (current_word, current_count))
        current_count = count
        current_word = word

if word == current_word:  #不要忘记最后的输出
    print("%s\t%s" % (current_word, current_count))

此时一共有三个文件

接着给mapper.py添加执行权限

chmod 777 mapper.py

 

接着给reduce.py添加执行权限

chmod 777 reduce.py

接下来开始运行

mapper.py程序运行

more ddd.txt | python ./mapper.py

排序运行

more ddd.txt | python ./mapper.py | sort

more ddd.txt | python ./mapper.py | sort -k1,1

俩个程序同时运行

more ddd.txt | python ./mapper.py | sort -k1,1 | ./reduce.py

二、在Hadoop环境中运行

 还是在这个目录下,新建一个run.sh文件

里面的内容如下

hadoop jar /opt/hadoop/hadoop/share/hadoop/tools/lib/hadoop-streaming-2.7.5.jar \
-file /home/hadoopuser/mydoc/py/mapper.py       -mapper /home/hadoopuser/mydoc/py/mapper.py \
-file /home/hadoopuser/mydoc/py/reduce.py       -reducer /home/hadoopuser/mydoc/py/reduce.py \
-input /tmp/py/input/*  -output /tmp/py/output

第一行配置的是hadoop-streaming-2.7.5.jar所在的位置,根据你的具体情况修改

我的环境是根据下面这篇博客搭建的

 Hadoop环境搭建

然后给run.sh添加可执行权限

chmod 777 run.sh

接着在hdfs环境下新建文件夹

hdfs dfs -mkdir -p /tmp/py/input

然后把ddd.txt上传进去

hdfs dfs -put ddd.txt /tmp/py/input

接着运行run.sh

source run.sh

接着查看生成的文件

hdfs dfs -ls /tmp/py/output

其中part-00000就是运行结果,打开看一下

hdfs dfs -cat /tmp/py/output/part-00000

然后把运行结果保存到本地

hdfs dfs -get /tmp/py/output/part-00000 /home/hadoopuser/mydoc/py

查看是否保存成功

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值