- 博客(1)
- 收藏
- 关注
原创 YOLO回归框后处理
以YOLOv1为例,共产生98个候选框后处理第一步置信度过滤:共有7x7x2=98 bboxes,假设一个类别为dog,将所有置信度小于0.2阈值(自设置)的概率全部抹0;上图中的每一列是置信度(存在目标的概率P(obj))与类别概率(这里的类别概率是条件概率P(class | obj))的乘积(cls score)。后处理第二步非极大值抑制:参考:https://www.bilibili.com/video/BV15w411Z7LG?p=5补充1:NMS为什么不直接选择类别得分最大的?因为
2022-02-11 19:27:40 1355
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人