写论文:(超详细流程!)将MySQL数据库的表结构从Navicat导入word生成三线表

1. 确认数据库名称和要导出的数据表名称

以数据库biyesheji和数据表app01_classnames为例。
在这里插入图片描述

2. 在Navicat中查询表结构

1. 在Navicat中新建查询文件

右键单击自己的数据库名,找到“新建查询”,单击新建。
在这里插入图片描述

会生成一个空白的查询文件。
在这里插入图片描述

2. 执行查询文件

  1. 将以下的代码复制进新建好的查询文件中,并将注释标注的位置修改数据库名称和数据表名称
    代码部分参考
SELECT
	COLUMN_NAME 列名,
	COLUMN_COMMENT 备注(字段含义),
	COLUMN_TYPE 数据类型,
	DATA_TYPE 字段类型,
	CHARACTER_MAXIMUM_LENGTH 长度,
	IS_NULLABLE 是否为空,
	COLUMN_DEFAULT 默认值
FROM
	INFORMATION_SCHEMA.COLUMNS 
	WHERE
	table_schema = 'biyesheji' -- 👈修改为自己的数据库名称
	AND
	table_name = 'app001_classnames' -- 👈修改为要导出的数据表名称
  1. 点击“保存”按钮,将文件保存在对应的数据库中,以防文件丢失。
    在这里插入图片描述
  2. 点击“运行”按钮,即可得到查询结果如下图。
    在这里插入图片描述

3. 在word中创建一个三线表

1. 在word中插入一个表格

在word中点击“插入”,选择“表格”,根据实际情况创建表格。

本例中,查询结果为7*4:
在这里插入图片描述

那么我们就新建一个7*4大小的表格:
在这里插入图片描述

2. 将表格样式更改为三线表

💠在选中表格之后,word的顶部导航栏会出现“表设计”选项,点击即可。
在这里插入图片描述

  1. 全选表格,按照下图中的步骤依次点击“边框”→“无框线”→“上框线”→“下框线”
    在这里插入图片描述
    此时,表格样式如下图,只有上框线和下框线。
    在这里插入图片描述
  2. 选择“边框刷”,在第一行下方绘制一条横线,如下图所示。
    在这里插入图片描述
  3. 绘制完成后即可得到三线表,如下图。
    在这里插入图片描述

4. 将查询结果导入word三线表

💠小问题:从Navicat的查询结果复制粘贴的时候,只能复制到数据内容,表头那一行目前只能自己手动输入(不过一般而言,一篇论文中要写的数据库表结构会有很多张,只需要自己手动输入一次表头,其余的也直接复制即可,也还算是比较省事)
💠要是大佬们还有别的好办法,欢迎在评论区讨论😊

  1. 手动输入表头
    在这里插入图片描述

  2. 在Navicat中全选要复制的数据,Ctrl+C复制
    在这里插入图片描述

  3. 全选表格中的空白位置,Ctrl+V粘贴
    在这里插入图片描述

  4. 结果如下图。
    在这里插入图片描述

  5. 此时的表格样式可能不太美观,根据自己的需求调整即可,简单调整后如下图。
    在这里插入图片描述
    由此,将数据表结构从Navicat中导入word三线表就完成了。

### 如何在 Navicat生成包含三线的 SQL 文件 为了实现这一目标,首先需要理解什么是三线以及如何利用Navicat的相关功能来达到目的。然而,值得注意的是,Navicat本身并不直接支持所谓的“三线”的概念;该术语通常用于描述文档或报告中的格样式,而不是SQL文件的一部分。 但是,可以通过导出带有适当格式化的SQL语句的方式来间接实现类似的效果。具体来说: - **准备阶段** - 连接到所需的数据库实例并导航至对应的模式下[^1]。 - **选择要导出的对象** - 右键点击想要导出的一个或多张,并从上下文菜单中选取合适的命令来进行下一步操作。对于同时导出结构和数据的情况,“转储SQL文件”是一个合适的选择[^2]。 - **配置导出设置** - 当选择了“转储SQL文件”之后,会出现一系列选项让用户指定导出的内容范围(仅限结构、仅有数据或是两者皆有),以及所期望的目标文件格式和其他细节参数。这里建议勾选`CREATE TABLE`语句以确保定义被包含进来。 - **定制化输出** - 尽管Navicat不会自动为你创建Markdown风格的三线,但可以在最终生成的SQL脚本基础上做进一步处理。例如,编一段简单的Python脚本来解析这些SQL语句并将它们转换成具有特定样式的文本示形式——即所谓的“三线”。 下面给出了一段示范性的Python代码片段,展示了怎样读取由Navicat产生的标准SQL文件,并将其转化为更易于阅读的形式: ```python import re def sql_to_markdown_table(sql_file_path): with open(sql_file_path, 'r') as file: content = file.read() create_statements = re.findall(r'CREATE\sTABLE.*?;', content, flags=re.DOTALL) tables_md_format = [] for stmt in create_statements: lines = [line.strip() for line in stmt.split('\n')] table_name_match = re.search('CREATE\sTABLE\s+(\w+)\s+', lines[0]) if not table_name_match: continue table_name = table_name_match.group(1).upper() columns_info = [] inside_parentheses = False column_definition = '' for part in lines[1:]: stripped_part = part.lstrip().rstrip(',') if '(' in stripped_part and ')' not in stripped_part: inside_parentheses = True elif ')' in stripped_part and '(' not in stripped_part: inside_parentheses = False if ';' in stripped_part or (not inside_parentheses and ',' not in stripped_part): break if inside_parentheses: column_definition += f'{stripped_part}\n' else: col_def_parts = stripped_part.split() if len(col_def_parts) >= 2: columns_info.append((col_def_parts[0], " ".join(col_def_parts[1:]))) formatted_columns = "\n".join([f"| {c[0]} | {c[1]} |" for c in columns_info]) md_table = ( f"# Table `{table_name}`\n\n" "| Column Name | Type |\n" "| --- | --- |\n" f"{formatted_columns}" ) tables_md_format.append(md_table) return '\n'.join(tables_md_format) if __name__ == "__main__": result = sql_to_markdown_table('./example.sql') print(result) ``` 这段程序能够接收一个普通的SQL文件作为输入源,提取其中所有的`CREATE TABLE`声明,并按照Markdown语法构建美观易懂的数据字典视图。当然,这只是一个基础版本的例子,实际应用时可以根据个人喜好调整其外观特性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值